enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotational symmetry - Wikipedia

    en.wikipedia.org/wiki/Rotational_symmetry

    Rotational symmetry of order n, also called n-fold rotational symmetry, or discrete rotational symmetry of the n th order, with respect to a particular point (in 2D) or axis (in 3D) means that rotation by an angle of ⁠ ⁠ (180°, 120°, 90°, 72°, 60°, 51 3 ⁄ 7 °, etc.) does not change the object. A "1-fold" symmetry is no symmetry (all ...

  3. Crystallographic restriction theorem - Wikipedia

    en.wikipedia.org/wiki/Crystallographic...

    The crystallographic restriction theorem in its basic form was based on the observation that the rotational symmetries of a crystal are usually limited to 2-fold, 3-fold, 4-fold, and 6-fold. However, quasicrystals can occur with other diffraction pattern symmetries, such as 5-fold; these were not discovered until 1982 by Dan Shechtman .

  4. Wallpaper group - Wikipedia

    en.wikipedia.org/wiki/Wallpaper_group

    This is followed by a digit, n, indicating the highest order of rotational symmetry: 1-fold (none), 2-fold, 3-fold, 4-fold, or 6-fold. The next two symbols indicate symmetries relative to one translation axis of the pattern, referred to as the "main" one; if there is a mirror perpendicular to a translation axis that is the main one (or if there ...

  5. Symmetry (geometry) - Wikipedia

    en.wikipedia.org/wiki/Symmetry_(geometry)

    For example. a square has four axes of symmetry, because there are four different ways to fold it and have the edges match each other. Another example would be that of a circle, which has infinitely many axes of symmetry passing through its center for the same reason. [10] If the letter T is reflected along a vertical axis, it appears the same.

  6. Polyhedral group - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_group

    The tetrahedral group of order 12, rotational symmetry group of the regular tetrahedron. It is isomorphic to A 4. The conjugacy classes of T are: identity; 4 × rotation by 120°, order 3, cw; 4 × rotation by 120°, order 3, ccw; 3 × rotation by 180°, order 2; The octahedral group of order 24, rotational symmetry group of the cube and the ...

  7. Dihedral symmetry in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Dihedral_symmetry_in_three...

    D 2, [2,2] +, (222) of order 4 is one of the three symmetry group types with the Klein four-group as abstract group. It has three perpendicular 2-fold rotation axes. It is the symmetry group of a cuboid with an S written on two opposite faces, in the same orientation. D 2h, [2,2], (*222) of order 8 is the symmetry group of a cuboid. D 2d, [4,2 ...

  8. Cyclic symmetry in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Cyclic_symmetry_in_three...

    It has reflection symmetry with respect to a plane perpendicular to the n-fold rotation axis. C nv, [n], (*nn) of order 2n - pyramidal symmetry or full acro-n-gonal group (abstract group Dih n); in biology C 2v is called biradial symmetry. For n=1 we have again C s (1*). It has vertical mirror planes. This is the symmetry group for a regular n ...

  9. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    Four 3-fold axes and three 4-fold axes (octahedral symmetries O and O h) Ten 3-fold axes and six 5-fold axes (icosahedral symmetries I and I h) According to the crystallographic restriction theorem, only a limited number of point groups are compatible with discrete translational symmetry: 27 from the 7 infinite series, and 5 of the 7 others.