Search results
Results from the WOW.Com Content Network
The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...
PrimeGrid is a volunteer computing project that searches for very large (up to world-record size) prime numbers whilst also aiming to solve long-standing mathematical conjectures. It uses the Berkeley Open Infrastructure for Network Computing (BOINC) platform. PrimeGrid offers a number of subprojects for prime-number sieving and discovery.
A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.
The multiples of a given prime are generated as a sequence of numbers starting from that prime, with constant difference between them that is equal to that prime. [1] This is the sieve's key distinction from using trial division to sequentially test each candidate number for divisibility by each prime. [ 2 ]
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.
See List of prime numbers for definitions and examples of many classes of primes. Pages in category "Classes of prime numbers" The following 76 pages are in this category, out of 76 total.
In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. [1] [2] It is denoted by π(x) (unrelated to the number π). A symmetric variant seen sometimes is π 0 (x), which is equal to π(x) − 1 ⁄ 2 if x is exactly a prime number, and equal to π(x) otherwise.
The prime number race generalizes to other moduli and is the subject of much research; Pál Turán asked whether it is always the case that π c,a (x) and π c,b (x) change places when a and b are coprime to c. [34] Granville and Martin give a thorough exposition and survey. [33] Graph of the number of primes ending in 1, 3, 7, and 9 up to n ...