Search results
Results from the WOW.Com Content Network
Fine-grain categorization and topic codes. 810,000 Text Classification, clustering ... GitHub repository or the Hugging Face ... with Python , R, Java, and other ...
The Hugging Face Hub is a platform (centralized web service) for hosting: [18] Git-based code repositories, including discussions and pull requests for projects. models, also with Git-based version control; datasets, mainly in text, images, and audio;
Hugging Face's transformers library can manipulate large language models. [4] Jupyter Notebooks can execute cells of Python code, retaining the context between the execution of cells, which usually facilitates interactive data exploration. [5] Elixir is a high-level functional programming language based on the Erlang VM. Its machine-learning ...
Researchers have also criticized open-source artificial intelligence for existing security and ethical concerns. An analysis of over 100,000 open-source models on Hugging Face and GitHub using code vulnerability scanners like Bandit, FlawFinder, and Semgrep found that over 30% of models have high-severity vulnerabilities. [92]
The model, as well as the code base and the data used to train it, are distributed under free licences. [3] BLOOM was trained on approximately 366 billion (1.6TB) tokens from March to July 2022. [4] [5] BLOOM is the main outcome of the BigScience collaborative initiative, [6] a one-year-long research workshop that took place between May 2021 ...
T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [ 1 ] [ 2 ] Like the original Transformer model, [ 3 ] T5 models are encoder-decoder Transformers , where the encoder processes the input text, and the decoder generates the output text.
In deep learning, fine-tuning is an approach to transfer learning in which the parameters of a pre-trained neural network model are trained on new data. [1] Fine-tuning can be done on the entire neural network, or on only a subset of its layers, in which case the layers that are not being fine-tuned are "frozen" (i.e., not changed during backpropagation). [2]
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.