Search results
Results from the WOW.Com Content Network
Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...
This usage of the term permutation is closely associated with the term combination to mean a subset. A k-combination of a set S is a k-element subset of S: the elements of a combination are not ordered. Ordering the k-combinations of S in all possible ways produces the k-permutations of S.
In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations).For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
A permutation group is a subgroup of a symmetric group; that is, its elements are permutations of a given set. It is thus a subset of a symmetric group that is closed under composition of permutations, contains the identity permutation, and contains the inverse permutation of each of its elements. [2]
In combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number.
Considering the symmetric group S n of all permutations of the set {1, ..., n}, we can conclude that the map sgn: S n → {−1, 1} that assigns to every permutation its signature is a group homomorphism. [2] Furthermore, we see that the even permutations form a subgroup of S n. [1] This is the alternating group on n letters, denoted by A n. [3]
Multiplying a matrix M by either or on either the left or the right will permute either the rows or columns of M by either π or π −1.The details are a bit tricky. To begin with, when we permute the entries of a vector (, …,) by some permutation π, we move the entry of the input vector into the () slot of the output vector.
Two examples of this type of problem are counting combinations and counting permutations. More generally, given an infinite collection of finite sets S i indexed by the natural numbers, enumerative combinatorics seeks to describe a counting function which counts the number of objects in S n for each n.