Search results
Results from the WOW.Com Content Network
Pulsars that were discovered before 1993 tend to retain their B names rather than use their J names (e.g. PSR J1921+2153 is more commonly known as PSR B1919+21). Recently discovered pulsars only have a J name (e.g. PSR J0437−4715). All pulsars have a J name that provides more precise coordinates of its location in the sky. [38]
The most dynamic feature in the inner part of the nebula is the point where the pulsar's equatorial wind slams into the surrounding nebula, forming a termination shock. The shape and position of this feature shifts rapidly, with the equatorial wind appearing as a series of wisp-like features that steepen, brighten, then fade as they move away ...
PSR B1937+21 is a pulsar located in the constellation Vulpecula a few degrees in the sky away from the first discovered pulsar, PSR B1919+21. [1] The name PSR B1937+21 is derived from the word "pulsar" and the declination and right ascension at which it is located, with the "B" indicating that the coordinates are for the 1950.0 epoch.
Using the Arecibo 305 m dish, Hulse and Taylor detected pulsed radio emissions and thus identified the source as a pulsar, a rapidly rotating, highly magnetized neutron star. The neutron star rotates on its axis 17 times per second; thus the pulse period is 59 milliseconds .
Millisecond pulsars have been detected in radio, X-ray, and gamma ray portions of the electromagnetic spectrum. The leading hypothesis for the origin of millisecond pulsars is that they are old, rapidly rotating neutron stars that have been spun up or "recycled" through accretion of matter from a companion star in a close binary system.
One potential way to image a planet is to detect its transit in front of the star: in case of pulsar planets, the probability of a planet transiting in front of pulsar is very low because of the small size of pulsars. Spectroscopic analyses of planets are rendered difficult by the complicated spectra of pulsars. Interactions between a planetary ...
Rotating radio transients (RRATs) are sources of short, moderately bright, radio pulses, which were first discovered in 2006. [1] RRATs are thought to be pulsars, i.e. rotating magnetised neutron stars which emit more sporadically and/or with higher pulse-to-pulse variability than the bulk of the known pulsars.
PSR J1748−2446ad is the fastest-spinning pulsar known, at 716 Hz (times per second), [2] or 42,960 revolutions per minute.This pulsar was discovered by Jason W. T. Hessels of McGill University on November 10, 2004, and confirmed on January 8, 2005.