Search results
Results from the WOW.Com Content Network
An ester of carboxylic acid.R stands for any group (organic or inorganic) and R′ stands for organyl group.. In chemistry, an ester is a compound derived from an acid (organic or inorganic) in which the hydrogen atom (H) of at least one acidic hydroxyl group (−OH) of that acid is replaced by an organyl group (−R).
The ensuing reaction results in the cleavage of the ether or the ester into an alkyl iodide and respectively an alcohol or a carboxylic acid. Zeisel determination. By heating this mixture, the gases are allowed to come into contact with a piece of paper higher up the test tube saturated with silver nitrate.
An ester of a carboxylic acid.R stands for any group (typically hydrogen or organyl) and R ′ stands for any organyl group.. In chemistry, an ester is a compound derived from an acid (organic or inorganic) in which the hydrogen atom (H) of at least one acidic hydroxyl group (−OH) of that acid is replaced by an organyl group (R ′). [1]
In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group (−C(=O)−OH) [1] attached to an R-group. The general formula of a carboxylic acid is often written as R−COOH or R−CO 2 H, sometimes as R−C(O)OH with R referring to an organyl group (e.g., alkyl, alkenyl, aryl), or hydrogen, or other groups ...
HATU is commonly encountered in amine acylation reactions (i.e., amide formation). Such reactions are typically performed in two distinct reaction steps: (1) reaction of a carboxylic acid with HATU to form the OAt-active ester; then (2) addition of the nucleophile (amine) to the active ester solution to afford the acylated product.
However, by using 4-trifluoromethylbenzoic anhydride (TFBA) as the aromatic carboxylic acid anhydride under acidic conditions and 2-methyl-6-nitrobenzoic anhydride (MNBA) as the aromatic carboxylic acid anhydride under basic conditions, practically no aromatic carboxylic acid esters are obtained as by-products.
They are often prepared by reaction of the acid or the ester with halogen: RCH 2 CO 2 R' + Cl 2 → RCHClCO 2 R' + HCl. A related method is the Hell-Volhard-Zelinsky halogenation. Amino acids are susceptible to diazotization in the presence of chloride, a process that affords chiral 2-chloro carboxylic acids and esters. [1]
The hydroxide anion adds to the carbonyl group of the ester. The immediate product is called an orthoester. Saponification part I. Expulsion of the alkoxide generates a carboxylic acid: Saponification part II. The alkoxide ion is a strong base so the proton is transferred from the carboxylic acid to the alkoxide ion, creating an alcohol: