Search results
Results from the WOW.Com Content Network
These diverticula make their appearance before the closure of the anterior end of the neural tube; [1] [2] after the closure of the tube around the 4th week of development, they are known as the optic vesicles. Previous studies of optic vesicles suggest that the surrounding extraocular tissues – the surface ectoderm and extraocular mesenchyme ...
Only the epidermis in the head is competent to respond to the signal from the optic vesicles. Both the optic vesicle and the head epidermis are required for eye development. The competence of the head epidermis to respond to the optic vesicle signals comes from the expression of Pax6 in the epidermis. Pax6 is necessary and sufficient for eye ...
The optic vesicles project toward the sides of the head, and the peripheral part of each expands to form a hollow bulb, while the proximal part remains narrow and constitutes the optic stalk. [1] [2] Closure of the choroidal fissure in the optic stalk occurs during the seventh week of development. The former optic stalk is then called the optic ...
Failure of neurulation, especially failure of closure of the neural tube are among the most common and disabling birth defects in humans, occurring in roughly 1 in every 500 live births. [42] Failure of the rostral end of the neural tube to close results in anencephaly, or lack of brain development, and is most often fatal. [43]
The optical vesicle (which eventually becomes the optic nerve, retina and iris) forms at the basal plate of the prosencephalon. The alar plate of the prosencephalon expands to form the cerebral hemispheres (the telencephalon) whilst its basal plate becomes the diencephalon. Finally, the optic vesicle grows to form an optic outgrowth.
Invagination is the process of folding in cells. The lens placode invaginates to later develop the lens or lens pit. The development of the lens placode is typically seen between 44 and 50 hours; invagination occurs shortly after at around the 50–55-hour mark.
The optic tract is a continuation of the optic nerve that relays information from the optic chiasm to the ipsilateral lateral geniculate nucleus (LGN), pretectal nuclei, and superior colliculus. [14] The optic tract represents the first stage in the visual pathway in which visual information is transferred in a homonymous nature. [ 15 ]
During embryonic development of the eye, the outer wall of the bulb of the optic vesicles becomes thickened and invaginated, and the bulb is thus converted into a cup, the optic cup (or ophthalmic cup), consisting of two strata of cells.