Ads
related to: exponential map in differential geometry practice problems
Search results
Results from the WOW.Com Content Network
In differential geometry, the exponential map is a generalization of the ordinary exponential function of mathematical analysis. Important special cases include: exponential map (Riemannian geometry) for a manifold with a Riemannian metric, exponential map (Lie theory) from a Lie algebra to a Lie group,
The exponential map of the Earth as viewed from the north pole is the polar azimuthal equidistant projection in cartography. In Riemannian geometry, an exponential map is a map from a subset of a tangent space T p M of a Riemannian manifold (or pseudo-Riemannian manifold) M to M itself. The (pseudo) Riemannian metric determines a canonical ...
The geometric exponential map for this metric at I coincides with the usual exponential function on matrices and thus the geodesics through I have the form exp Xt where X is a skew-symmetric matrix. In this case the Sasaki metric agrees with this biinvariant metric on SO(3).
In Riemannian geometry, Gauss's lemma asserts that any sufficiently small sphere centered at a point in a Riemannian manifold is perpendicular to every geodesic through the point. More formally, let M be a Riemannian manifold, equipped with its Levi-Civita connection, and p a point of M. The exponential map is a mapping from the tangent space ...
It is the exponential map of a canonical right-invariant affine connection on G. This is usually different from the canonical left-invariant connection, but both connections have the same geodesics (orbits of 1-parameter subgroups acting by left or right multiplication) so give the same exponential map.
The Cartan–Hadamard theorem in conventional Riemannian geometry asserts that the universal covering space of a connected complete Riemannian manifold of non-positive sectional curvature is diffeomorphic to R n. In fact, for complete manifolds of non-positive curvature, the exponential map based at any point of the manifold is a covering map.
The map from tangent vectors to endpoints smoothly sweeps out a neighbourhood of the base point and defines what is called the exponential map, defining a local coordinate chart at that base point. The neighbourhood swept out has similar properties to balls in Euclidean space, namely any two points in it are joined by a unique geodesic.
The inverse function theorem together with the derivative of the exponential map provides information about the local behavior of exp. Any C k, 0 ≤ k ≤ ∞, ω map f between vector spaces (here first considering matrix Lie groups) has a C k inverse such that f is a C k bijection in an open set around a point x in the domain provided df x is
Ads
related to: exponential map in differential geometry practice problems