Search results
Results from the WOW.Com Content Network
A Binomial distributed random variable X ~ B(n, p) can be considered as the sum of n Bernoulli distributed random variables. So the sum of two Binomial distributed random variables X ~ B(n, p) and Y ~ B(m, p) is equivalent to the sum of n + m Bernoulli distributed random variables, which means Z = X + Y ~ B(n + m, p). This can also be proven ...
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
The cumulative property follows quickly by considering the cumulant-generating function: + + = [(+ +)] = ( [] []) = [] + + [] = + + (), so that each cumulant of a sum of independent random variables is the sum of the corresponding cumulants of the addends. That is, when the addends are statistically ...
In the case of real-valued random variables, the joint distribution, as a particular multivariate distribution, may be expressed by a multivariate cumulative distribution function, or by a multivariate probability density function together with a multivariate probability mass function.
The blue picture illustrates an example of fitting the logistic distribution to ranked October rainfalls—that are almost normally distributed—and it shows the 90% confidence belt based on the binomial distribution. The rainfall data are represented by plotting positions as part of the cumulative frequency analysis.
Johnson distributions are also sometimes used in option pricing, so as to accommodate an observed volatility smile; see Johnson binomial tree. An alternative to the Johnson system of distributions is the quantile-parameterized distributions (QPDs). QPDs can provide greater shape flexibility than the Johnson system.
In statistics, cumulative distribution function (CDF)-based nonparametric confidence intervals are a general class of confidence intervals around statistical functionals of a distribution. To calculate these confidence intervals, all that is required is an independently and identically distributed (iid) sample from the distribution and known ...
Distribution functions: normal probability density function at mean=0 and sigma=1 (f(x), probability between x boundaries), inverse cumulative normal distribution function for a given area under the normal distribution curve with user-specified mean and standard deviation, probability at x for the discrete binomial distribution with user ...