Search results
Results from the WOW.Com Content Network
Caesium-137 (137 55 Cs), cesium-137 (US), [7] or radiocaesium, is a radioactive isotope of caesium that is formed as one of the more common fission products by the nuclear fission of uranium-235 and other fissionable isotopes in nuclear reactors and nuclear weapons.
Caesium-135 is a mildly radioactive isotope of caesium with a half-life of 1.33 million years. It decays via emission of a low-energy beta particle into the stable isotope barium-135. Caesium-135 is one of the seven long-lived fission products and the only alkaline one.
The 137 Cs level is higher in the sample that was further away from the ground zero point – this is thought to be because the precursors to the 137 Cs (137 I and 137 Xe) and, to a lesser degree, the caesium itself are volatile. The natural radioisotopes in the glass are about the same in both locations.
Decay of caesium-137. The radioactive 135 Cs has a very long half-life of about 2.3 million years, the longest of all radioactive isotopes of caesium. 137 Cs and 134 Cs have half-lives of 30 and two years, respectively. 137 Cs decomposes to a short-lived 137m Ba by beta decay, and then to nonradioactive barium, while 134 Cs transforms into 134 ...
The sum of the atomic mass of the two atoms produced by the fission of one fissile atom is always less than the atomic mass of the original atom. This is because some of the mass is lost as free neutrons, and once kinetic energy of the fission products has been removed (i.e., the products have been cooled to extract the heat provided by the reaction), then the mass associated with this energy ...
As caesium 133, 135, and 137 are formed by the beta particle decay of the corresponding xenon isotopes, this causes the caesium to become physically separated from the bulk of the uranium oxide fuel. Because 135 Xe is a potent nuclear poison with the largest cross section for thermal neutron absorption, the buildup of 135 Xe in the fuel inside ...
The high short-term radioactivity of spent nuclear fuel is primarily from fission products with short half-life.The radioactivity in the fission product mixture is mostly due to short-lived isotopes such as 131 I and 140 Ba, after about four months 141 Ce, 95 Zr/ 95 Nb and 89 Sr constitute the largest contributors, while after about two or three years the largest share is taken by 144 Ce/ 144 ...
As a result, if the zircaloy tubes holding the pellet are broken then a greater release of radioactive caesium from the fuel will occur. The 134 Cs and 137 Cs are formed in different ways, and hence as a result the two caesium isotopes can be found at different parts of a fuel pin.