Search results
Results from the WOW.Com Content Network
The Hall–Héroult process is the major industrial process for smelting aluminium. It involves dissolving aluminium oxide (alumina) (obtained most often from bauxite , aluminium 's chief ore, through the Bayer process ) in molten cryolite and electrolyzing the molten salt bath, typically in a purpose-built cell.
Alumina is extracted from the ore bauxite by means of the Bayer process at an alumina refinery. This is an electrolytic process, so an aluminium smelter uses huge amounts of electric power; smelters tend to be located close to large power stations, often hydro-electric ones, in order to hold down costs and reduce the overall carbon footprint ...
Molten cryolite is used as a solvent for aluminium oxide (Al 2 O 3) in the Hall–Héroult process, used in the refining of aluminium. It decreases the melting point of aluminium oxide from 2000–2500 °C to 900–1000 °C, and increases its conductivity [ 18 ] thus making the extraction of aluminium more economical.
Aluminium recycling is the process in which secondary commercial aluminium is created from scrap or other forms of end-of-life or otherwise unusable aluminium. [1] It involves re-melting the metal, which is cheaper and more energy-efficient than the production of virgin aluminium by electrolysis of alumina (Al 2 O 3 ) refined from raw bauxite ...
Hall and Heroult share credit for inventing aluminium electrolysis. [9] The Hall–Heroult method is the primary method of producing modern aluminium and requires high purity alumina to produce aluminium. The Bayer process produces high purity alumina which is then used in the Hall–Heroult process as the main raw material. [9]
Primary aluminium smelting is the process of extracting aluminium from aluminium oxide (also known as alumina). The process takes place in electrolytic cells that are known as pots. The pots are made up of steel shells with two linings, an outer insulating or refractory lining and an inner carbon lining that acts as the cathode of the ...
The process consumes the anode at a rate of roughly 450 kg of anode per tonne of aluminium produced. [ 1 ] "Spent" anodes have little industrial use and are generally discarded; however, anodes that have been used to process aluminium fluoride may contain some amount of hydrogen fluoride and require hazardous waste disposal procedures. [ 2 ]
The Wöhler process was one of the first routes for producing aluminium metal. It involves the reduction of anhydrous aluminium chloride with potassium , produced powdered aluminium: [ 1 ] AlCl 3 + 3 K → Al + 3 KCl