enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fréchet filter - Wikipedia

    en.wikipedia.org/wiki/Fréchet_filter

    If the base set is finite, then = ℘ since every subset of , and in particular every complement, is then finite.This case is sometimes excluded by definition or else called the improper filter on . [2] Allowing to be finite creates a single exception to the Fréchet filter’s being free and non-principal since a filter on a finite set cannot be free and a non-principal filter cannot contain ...

  3. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    Motivated by such relations, a plethora of related and competing quantities have been defined. For example, David Ellerman's analysis of a "logic of partitions" defines a competing measure in structures dual to that of subsets of a universal set. [14] Information is quantified as "dits" (distinctions), a measure on partitions.

  4. Set packing - Wikipedia

    en.wikipedia.org/wiki/Set_packing

    Set packing is a classical NP-complete problem in computational complexity theory and combinatorics, and was one of Karp's 21 NP-complete problems.Suppose one has a finite set S and a list of subsets of S.

  5. Filter (set theory) - Wikipedia

    en.wikipedia.org/wiki/Filter_(set_theory)

    In mathematics, a filter on a set is a family of subsets such that: [1]. and ; if and , then ; If and , then ; A filter on a set may be thought of as representing a "collection of large subsets", [2] one intuitive example being the neighborhood filter.

  6. Null set - Wikipedia

    en.wikipedia.org/wiki/Null_set

    A measure in which all subsets of null sets are measurable is complete. Any non-complete measure can be completed to form a complete measure by asserting that subsets of null sets have measure zero. Lebesgue measure is an example of a complete measure; in some constructions, it is defined as the completion of a non-complete Borel measure.

  7. Set cover problem - Wikipedia

    en.wikipedia.org/wiki/Set_cover_problem

    Given a set of elements {1, 2, …, n} (henceforth referred to as the universe, specifying all possible elements under consideration) and a collection, referred to as S, of a given m subsets whose union equals the universe, the set cover problem is to identify a smallest sub-collection of S whose union equals the universe.

  8. Nested set collection - Wikipedia

    en.wikipedia.org/wiki/Nested_set_collection

    A nested set collection or nested set family is a collection of sets that consists of chains of subsets forming a hierarchical structure, like Russian dolls. It is used as reference concept in scientific hierarchy definitions, and many technical approaches, like the tree in computational data structures or nested set model of relational databases .

  9. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset of integers and a target-sum , and the question is to decide whether any subset of the integers sum to precisely . [1] The problem is known to be NP-complete.