enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Branch point - Wikipedia

    en.wikipedia.org/wiki/Branch_point

    In particular, a branch of the logarithm exists in the complement of any ray from the origin to infinity: a branch cut. A common choice of branch cut is the negative real axis, although the choice is largely a matter of convenience. The logarithm has a jump discontinuity of 2 π i when crossing the branch cut. The logarithm can be made ...

  3. Branch and cut - Wikipedia

    en.wikipedia.org/wiki/Branch_and_cut

    This description assumes the ILP is a maximization problem.. The method solves the linear program without the integer constraint using the regular simplex algorithm.When an optimal solution is obtained, and this solution has a non-integer value for a variable that is supposed to be integer, a cutting plane algorithm may be used to find further linear constraints which are satisfied by all ...

  4. Principal branch - Wikipedia

    en.wikipedia.org/wiki/Principal_branch

    A branch cut, usually along the negative real axis, can limit the imaginary part so it lies between −π and π. These are the chosen principal values. This is the principal branch of the log function. Often it is defined using a capital letter, Log z.

  5. Contour integration - Wikipedia

    en.wikipedia.org/wiki/Contour_integration

    However, the important thing to note is that z 1/2 = e (Log z)/2, so z 1/2 has a branch cut. This affects our choice of the contour C. Normally the logarithm branch cut is defined as the negative real axis, however, this makes the calculation of the integral slightly more complicated, so we define it to be the positive real axis.

  6. Hypergeometric function - Wikipedia

    en.wikipedia.org/wiki/Hypergeometric_function

    For complex arguments z with | z | ≥ 1 it can be analytically continued along any path in the complex plane that avoids the branch points 1 and infinity. In practice, most computer implementations of the hypergeometric function adopt a branch cut along the line z ≥ 1. As c → −m, where m is a non-negative integer, one has 2 F 1 (z) → ∞.

  7. Exponential integral - Wikipedia

    en.wikipedia.org/wiki/Exponential_integral

    The sum converges for all complex , and we take the usual value of the complex logarithm having a branch cut along the negative real axis. This formula can be used to compute E 1 ( x ) {\displaystyle E_{1}(x)} with floating point operations for real x {\displaystyle x} between 0 and 2.5.

  8. Cauchy principal value - Wikipedia

    en.wikipedia.org/wiki/Cauchy_principal_value

    The result of the procedure for principal value is the same as the ordinary integral; since it no longer matches the definition, it is technically not a "principal value". The Cauchy principal value can also be defined in terms of contour integrals of a complex-valued function f ( z ) : z = x + i y , {\displaystyle f(z):z=x+i\,y\;,} with x , y ...

  9. Xcas - Wikipedia

    en.wikipedia.org/wiki/Xcas

    There is a port of Giac/Xcas for Casio graphing calculators fx-CG10, fx-CG20, fx-CG50, fx-9750GIII and fx-9860GIII, called χCAS (KhiCAS). These calculators do not have their own computer algebra system. It is also available for TI Nspire CX, CX-II, and Numworks N0110 [40]