Search results
Results from the WOW.Com Content Network
In theoretical computer science, the continuous knapsack problem (also known as the fractional knapsack problem) is an algorithmic problem in combinatorial optimization in which the goal is to fill a container (the "knapsack") with fractional amounts of different materials chosen to maximize the value of the selected materials.
The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.
Knapsack problems appear in real-world decision-making processes in a wide variety of fields, such as finding the least wasteful way to cut raw materials, [3] selection of investments and portfolios, [4] selection of assets for asset-backed securitization, [5] and generating keys for the Merkle–Hellman [6] and other knapsack cryptosystems.
The graph shows the running time vs. problem size for a knapsack problem of a state-of-the-art, specialized algorithm. The quadratic fit suggests that the algorithmic complexity of the problem is O((log(n)) 2). [24] All of the above discussion has assumed that P means "easy" and "not in P" means "difficult", an assumption known as Cobham's ...
0-1 knapsack problem. [19] Unbounded knapsack problem. [20] Multi-dimensional knapsack problem with Delta-modular constraints. [21] Multi-objective 0-1 knapsack problem. [22] Parametric knapsack problem. [23] Symmetric quadratic knapsack problem. [24] Count-subset-sum (#SubsetSum) - finding the number of distinct subsets with a sum of at most C ...
For example, bin packing is strongly NP-complete while the 0-1 Knapsack problem is only weakly NP-complete. Thus the version of bin packing where the object and bin sizes are integers bounded by a polynomial remains NP-complete, while the corresponding version of the Knapsack problem can be solved in pseudo-polynomial time by dynamic programming.
For example, the NP-hard knapsack problem can be solved by a dynamic programming algorithm requiring a number of steps polynomial in the size of the knapsack and the number of items (assuming that all data are scaled to be integers); however, the runtime of this algorithm is exponential time since the input sizes of the objects and knapsack are ...
The bin packing problem can also be seen as a special case of the cutting stock problem. When the number of bins is restricted to 1 and each item is characterized by both a volume and a value, the problem of maximizing the value of items that can fit in the bin is known as the knapsack problem.