enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Longest common substring - Wikipedia

    en.wikipedia.org/wiki/Longest_common_substring

    The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it. The figure on the right is the suffix tree for the strings "ABAB", "BABA" and "ABBA", padded with unique string ...

  3. Gestalt pattern matching - Wikipedia

    en.wikipedia.org/wiki/Gestalt_Pattern_Matching

    The similarity of two strings and is determined by this formula: twice the number of matching characters divided by the total number of characters of both strings. The matching characters are defined as some longest common substring [3] plus recursively the number of matching characters in the non-matching regions on both sides of the longest common substring: [2] [4]

  4. Damerau–Levenshtein distance - Wikipedia

    en.wikipedia.org/wiki/Damerau–Levenshtein_distance

    The difference between the two algorithms consists in that the optimal string alignment algorithm computes the number of edit operations needed to make the strings equal under the condition that no substring is edited more than once, whereas the second one presents no such restriction.

  5. Approximate string matching - Wikipedia

    en.wikipedia.org/wiki/Approximate_string_matching

    After computing E(i, j) for all i and j, we can easily find a solution to the original problem: it is the substring for which E(m, j) is minimal (m being the length of the pattern P.) Computing E(m, j) is very similar to computing the edit distance between two strings.

  6. Levenshtein distance - Wikipedia

    en.wikipedia.org/wiki/Levenshtein_distance

    In information theory, linguistics, and computer science, the Levenshtein distance is a string metric for measuring the difference between two sequences. The Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other.

  7. Hamming distance - Wikipedia

    en.wikipedia.org/wiki/Hamming_distance

    In information theory, the Hamming distance between two strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or equivalently, the minimum number of errors that could have transformed one string into the other.

  8. Edit distance - Wikipedia

    en.wikipedia.org/wiki/Edit_distance

    Ukkonen's 1985 algorithm takes a string p, called the pattern, and a constant k; it then builds a deterministic finite state automaton that finds, in an arbitrary string s, a substring whose edit distance to p is at most k [13] (cf. the Aho–Corasick algorithm, which similarly constructs an automaton to search for any of a number of patterns ...

  9. Boyer–Moore–Horspool algorithm - Wikipedia

    en.wikipedia.org/wiki/Boyer–Moore–Horspool...

    The best case is the same as for the Boyer–Moore string-search algorithm in big O notation, although the constant overhead of initialization and for each loop is less. The worst case behavior happens when the bad character skip is consistently low (with the lower limit of 1 byte movement) and a large portion of the needle matches the haystack.