Search results
Results from the WOW.Com Content Network
In machine learning and data mining, quantification (variously called learning to quantify, or supervised prevalence estimation, or class prior estimation) is the task of using supervised learning in order to train models (quantifiers) that estimate the relative frequencies (also known as prevalence values) of the classes of interest in a sample of unlabelled data items.
A misleading [1] information diagram showing additive and subtractive relationships among Shannon's basic quantities of information for correlated variables and .The area contained by both circles is the joint entropy (,).
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
In statistics, an approximate entropy (ApEn) is a technique used to quantify the amount of regularity and the unpredictability of fluctuations over time-series data. [1] For example, consider two series of data:
The entropy rate of a data source is the average number of bits per symbol needed to encode it. Shannon's experiments with human predictors show an information rate between 0.6 and 1.3 bits per character in English; [21] the PPM compression algorithm can achieve a compression ratio of 1.5 bits per character in English text.
The GitHub repository of the project contains a file with links to the data stored in box. Data files can also be downloaded here. [351] APT Notes arXiv Cryptography and Security papers Collection of articles about cybersecurity This data is not pre-processed. All articles available here. [352] arXiv Security eBooks for free
As we know, information gain is the reduction in information entropy, what is entropy? Basically, entropy is the measure of impurity or uncertainty in a group of observations. In engineering applications, information is analogous to signal, and entropy is analogous to noise. It determines how a decision tree chooses to split data. [1]
In decision tree learning, ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan [1] used to generate a decision tree from a dataset. ID3 is the precursor to the C4.5 algorithm , and is typically used in the machine learning and natural language processing domains.