Search results
Results from the WOW.Com Content Network
The three elements of the latter are the identity, "clockwise rotation", and "anti-clockwise rotation", corresponding to permutations of the three orthogonal 2-fold axes, preserving orientation. It is the symmetry of a cube with on each face a line segment dividing the face into two equal rectangles, such that the line segments of adjacent ...
The subgroup of orientation-preserving symmetries (translations, rotations, and compositions of these) is called its proper symmetry group. An object is chiral when it has no orientation-reversing symmetries, so that its proper symmetry group is equal to its full symmetry group.
Every polyhedron with icosahedral symmetry has 60 rotational (or orientation-preserving) symmetries and 60 orientation-reversing symmetries (that combine a rotation and a reflection), for a total symmetry order of 120. The full symmetry group is the Coxeter group of type H 3. It may be represented by Coxeter notation [5,3] and Coxeter diagram.
The direct (orientation-preserving) symmetry operations, which form the group SO(3): The identity operation, denoted by E or the identity matrix I. Rotation about an axis through the origin by an angle θ. Rotation by θ = 360°/n for any positive integer n is denoted C n (from the Schoenflies notation for the group C n that it generates).
In addition to preserving length, proper rotations must also preserve orientation. A matrix will preserve or reverse orientation according to whether the determinant of the matrix is positive or negative. For an orthogonal matrix R, note that det R T = det R implies (det R) 2 = 1, so that det R = ±1.
Achiral and chiral operators are also called local symmetry-preserving operations (LSP) and local operations that preserve orientation-preserving symmetries (LOPSP), respectively. [7] [8] [9] LSPs should be understood as local operations that preserve symmetry, not operations that preserve local symmetry. Again, these are symmetries in a ...
The translations by a given distance in any direction form a conjugacy class; the translation group is the union of those for all distances. In 1D, all reflections are in the same class. In 2D, rotations by the same angle in either direction are in the same class. Glide reflections with translation by the same distance are in the same class. In 3D:
Therefore, inversion in a point in even-dimensional space is an orientation-preserving isometry or direct isometry. In odd-dimensional Euclidean space , say (2 N + 1)-dimensional space, it is equivalent to N rotations over π in each plane of an arbitrary set of N mutually orthogonal planes intersecting at P , combined with the reflection in ...