enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov theorem - Wikipedia

    en.wikipedia.org/wiki/Markov_theorem

    More precisely Markov's theorem can be stated as follows: [2] [3] given two braids represented by elements , ′ in the braid groups ,, their closures are equivalent links if and only if ′ can be obtained from applying to a sequence of the following operations:

  3. Markov's principle - Wikipedia

    en.wikipedia.org/wiki/Markov's_principle

    Markov's principle is equivalent, in the language of real analysis, to the following principles: For each real number x , if it is contradictory that x is equal to 0, then there exists a rational number y such that 0 < y < | x |, often expressed by saying that x is apart from, or constructively unequal to, 0.

  4. Gauss–Markov theorem - Wikipedia

    en.wikipedia.org/wiki/Gauss–Markov_theorem

    The theorem was named after Carl Friedrich Gauss and Andrey Markov, although Gauss' work significantly predates Markov's. [3] But while Gauss derived the result under the assumption of independence and normality, Markov reduced the assumptions to the form stated above. [4] A further generalization to non-spherical errors was given by Alexander ...

  5. Gauss–Markov - Wikipedia

    en.wikipedia.org/wiki/Gauss–Markov

    The phrase Gauss–Markov is used in two different ways: Gauss–Markov processes in probability theory The Gauss–Markov theorem in mathematical statistics (in this theorem, one does not assume the probability distributions are Gaussian.)

  6. Markov's inequality - Wikipedia

    en.wikipedia.org/wiki/Markov's_inequality

    In probability theory, Markov's inequality gives an upper bound on the probability that a non-negative random variable is greater than or equal to some positive constant. Markov's inequality is tight in the sense that for each chosen positive constant, there exists a random variable such that the inequality is in fact an equality.

  7. Gauss–Markov process - Wikipedia

    en.wikipedia.org/wiki/Gauss–Markov_process

    Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] A stationary Gauss–Markov process is unique [citation needed] up to rescaling; such a process is also known as an Ornstein–Uhlenbeck process.

  8. Markov property - Wikipedia

    en.wikipedia.org/wiki/Markov_property

    The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model. A Markov random field extends this property to two or more dimensions or to random variables defined for an interconnected network of items. [1] An example of a model for such a field is the Ising model.

  9. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    A game of snakes and ladders or any other game whose moves are determined entirely by dice is a Markov chain, indeed, an absorbing Markov chain. This is in contrast to card games such as blackjack, where the cards represent a 'memory' of the past moves. To see the difference, consider the probability for a certain event in the game.