enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov theorem - Wikipedia

    en.wikipedia.org/wiki/Markov_theorem

    More precisely Markov's theorem can be stated as follows: [2] [3] given two braids represented by elements , ′ in the braid groups ,, their closures are equivalent links if and only if ′ can be obtained from applying to a sequence of the following operations:

  3. Markov property - Wikipedia

    en.wikipedia.org/wiki/Markov_property

    The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model. A Markov random field extends this property to two or more dimensions or to random variables defined for an interconnected network of items. [1] An example of a model for such a field is the Ising model.

  4. Gauss–Markov theorem - Wikipedia

    en.wikipedia.org/wiki/Gauss–Markov_theorem

    The theorem was named after Carl Friedrich Gauss and Andrey Markov, although Gauss' work significantly predates Markov's. [3] But while Gauss derived the result under the assumption of independence and normality, Markov reduced the assumptions to the form stated above. [4] A further generalization to non-spherical errors was given by Alexander ...

  5. Markov kernel - Wikipedia

    en.wikipedia.org/wiki/Markov_kernel

    The composition is associative by the Monotone Convergence Theorem and the identity function considered as a Markov kernel (i.e. the delta measure (′ |) = (′)) is the unit for this composition. This composition defines the structure of a category on the measurable spaces with Markov kernels as morphisms, first defined by Lawvere, [ 4 ] the ...

  6. Gauss–Markov process - Wikipedia

    en.wikipedia.org/wiki/Gauss–Markov_process

    Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] A stationary Gauss–Markov process is unique [citation needed] up to rescaling; such a process is also known as an Ornstein–Uhlenbeck process.

  7. Kolmogorov equations - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov_equations

    Feller derives the equations under slightly different conditions, starting with the concept of purely discontinuous Markov process and then formulating them for more general state spaces. [5] Feller proves the existence of solutions of probabilistic character to the Kolmogorov forward equations and Kolmogorov backward equations under natural ...

  8. Markov number - Wikipedia

    en.wikipedia.org/wiki/Markov_number

    None of the prime divisors of a Markov number is congruent to 3 modulo 4, which implies that an odd Markov number is 1 more than a multiple of 4. [9] Furthermore, if is a Markov number then none of the prime divisors of is congruent to 3 modulo 4. An even Markov number is 2 more than a multiple of 32.

  9. Reflection principle (Wiener process) - Wikipedia

    en.wikipedia.org/wiki/Reflection_principle...

    Then we can apply the strong Markov property to deduce that a relative path subsequent to , given by := (+), is also simple Brownian motion independent of . Then the probability distribution for the last time W ( s ) {\displaystyle W(s)} is at or above the threshold a {\displaystyle a} in the time interval [ 0 , t ] {\displaystyle [0,t]} can be ...