Search results
Results from the WOW.Com Content Network
Cohesion, along with adhesion (attraction between unlike molecules), helps explain phenomena such as meniscus, surface tension and capillary action. Mercury in a glass flask is a good example of the effects of the ratio between cohesive and adhesive forces.
Adhesion is the tendency of dissimilar particles or surfaces to cling to one another. (Cohesion refers to the tendency of similar or identical particles and surfaces to cling to one another.) The forces that cause adhesion and cohesion can be divided into several types.
The forces of attraction acting between molecules of the same type are called cohesive forces, while those acting between molecules of different types are called adhesive forces. The balance between the cohesion of the liquid and its adhesion to the material of the container determines the degree of wetting, the contact angle, and the shape of ...
Water also has high adhesion properties because of its polar nature. On clean, smooth glass the water may form a thin film because the molecular forces between glass and water molecules (adhesive forces) are stronger than the cohesive forces.
Cohesion is the component of shear strength of a rock or soil that is independent of interparticle friction. In soils, true cohesion is caused by following: Electrostatic forces in stiff overconsolidated clays (which may be lost through weathering) Cementing by Fe 2 O 3, Ca CO 3, Na Cl, etc. There can also be apparent cohesion. This is caused by:
The classical theory of contact focused primarily on non-adhesive contact where no tension force is allowed to occur within the contact area, i.e., contacting bodies can be separated without adhesion forces. Several analytical and numerical approaches have been used to solve contact problems that satisfy the no-adhesion condition.
The contact angle is determined by the balance between adhesive and cohesive forces. As the tendency of a drop to spread out over a flat, solid surface increases, the contact angle decreases. Thus, the contact angle provides an inverse measure of wettability.
The bond has strength because the adhesive is hard enough to resist flow when stress is applied to the bond. Once the adhesive and the adherend are in close proximity, molecular interactions, such as van der Waals forces , become involved in the bond, contributing significantly to its ultimate strength.