enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cyclic redundancy check - Wikipedia

    en.wikipedia.org/wiki/Cyclic_redundancy_check

    The CRC and associated polynomial typically have a name of the form CRC-n-XXX as in the table below. The simplest error-detection system, the parity bit, is in fact a 1-bit CRC: it uses the generator polynomial x + 1 (two terms), [5] and has the name CRC-1.

  3. Mathematics of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_cyclic...

    In the above equations, + + represents the original message bits 111, + is the generator polynomial, and the remainder (equivalently, ) is the CRC. The degree of the generator polynomial is 1, so we first multiplied the message by to get + +.

  4. Computation of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Computation_of_cyclic...

    To maximise computation speed, an intermediate remainder can be calculated by first computing the CRC of the message modulo a sparse polynomial which is a multiple of the CRC polynomial. For CRC-32, the polynomial x 123 + x 111 + x 92 + x 84 + x 64 + x 46 + x 23 + 1 has the property that its terms (feedback taps) are at least 8 positions apart ...

  5. BCH code - Wikipedia

    en.wikipedia.org/wiki/BCH_code

    Since the generator polynomial is of degree 10, this code has 5 data bits and 10 checksum bits. It is also denoted as: (15, 5) BCH code. (This particular generator polynomial has a real-world application, in the "format information" of the QR code.) The BCH code with = and higher has the generator polynomial

  6. Cyclic code - Wikipedia

    en.wikipedia.org/wiki/Cyclic_code

    Here, codeword polynomial is an element of a linear code whose code words are polynomials that are divisible by a polynomial of shorter length called the generator polynomial. Every codeword polynomial can be expressed in the form c ( x ) = a ( x ) g ( x ) {\displaystyle c(x)=a(x)g(x)} , where g ( x ) {\displaystyle g(x)} is the generator ...

  7. Error detection and correction - Wikipedia

    en.wikipedia.org/wiki/Error_detection_and_correction

    It is not suitable for detecting maliciously introduced errors. It is characterized by specification of a generator polynomial, which is used as the divisor in a polynomial long division over a finite field, taking the input data as the dividend. The remainder becomes the result. A CRC has properties that make it well suited for detecting burst ...

  8. Reed–Solomon error correction - Wikipedia

    en.wikipedia.org/wiki/Reed–Solomon_error...

    By 1963 (or possibly earlier), J. J. Stone (and others) recognized that Reed–Solomon codes could use the BCH scheme of using a fixed generator polynomial, making such codes a special class of BCH codes, [4] but Reed–Solomon codes based on the original encoding scheme are not a class of BCH codes, and depending on the set of evaluation ...

  9. Burst error-correcting code - Wikipedia

    en.wikipedia.org/wiki/Burst_error-correcting_code

    Now, we can think of words as polynomials over , where the individual symbols of a word correspond to the different coefficients of the polynomial. To define a cyclic code, we pick a fixed polynomial, called generator polynomial. The codewords of this cyclic code are all the polynomials that are divisible by this generator polynomial.