Search results
Results from the WOW.Com Content Network
In a series circuit, the current that flows through each of the components is the same, and the voltage across the circuit is the sum of the individual voltage drops across each component. [1] In a parallel circuit, the voltage across each of the components is the same, and the total current is the sum of the currents flowing through each ...
Kirchhoff's circuit laws are two equalities that deal with the current and potential difference (commonly known as voltage) in the lumped element model of electrical circuits. They were first described in 1845 by German physicist Gustav Kirchhoff. [1] This generalized the work of Georg Ohm and preceded the work of James Clerk Maxwell.
An RLC circuit is an electrical circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that are used to denote the constituent components of this circuit, where the sequence of the components may vary from RLC.
In electrical engineering, Millman's theorem [1] (or the parallel generator theorem) is a method to simplify the solution of a circuit. Specifically, Millman's theorem is used to compute the voltage at the ends of a circuit made up of only branches in parallel. It is named after Jacob Millman, who proved the theorem.
A simple electric circuit made up of a voltage source and a resistor. Here, V = i R {\displaystyle V=iR} , according to Ohm's Law . In the theory of electrical networks , a dependent source is a voltage source or a current source whose value depends on a voltage or current elsewhere in the network.
In each circuit, there is a 9 V battery and two 500 Ω resistors. In the series circuit, the resistors subtract voltage and the current is equal everywhere. In the parallel circuit, each resistor provides additional conductivity, so the current through each of them is summed and the voltage is equal everywhere. See Series and parallel circuits.
These include resistors in series, resistors in parallel and the extension to series and parallel circuits for capacitors, inductors and general impedances. Also well known are the Norton and Thévenin equivalent current generator and voltage generator circuits respectively, as is the Y-Δ transform. None of these are discussed in detail here ...
A simple electric circuit made up of a voltage source and a resistor. Here, =, according to Ohm's law. An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sources, current sources, resistances, inductances ...