Search results
Results from the WOW.Com Content Network
Gene conversion is the process by which one DNA sequence replaces a homologous sequence such that the sequences become identical after the conversion. [1] Gene conversion can be either allelic, meaning that one allele of the same gene replaces another allele, or ectopic, meaning that one paralogous DNA sequence converts another.
Sequence homology is the biological homology between DNA, RNA, or protein sequences, defined in terms of shared ancestry in the evolutionary history of life. Two segments of DNA can have shared ancestry because of three phenomena: either a speciation event (orthologs), or a duplication event (paralogs), or else a horizontal (or lateral) gene ...
The principle of homology: The biological relationships (shown by colours) of the bones in the forelimbs of vertebrates were used by Charles Darwin as an argument in favor of evolution. In biology , homology is similarity in anatomical structures or genes between organisms of different taxa due to shared ancestry , regardless of current ...
Meiosis generates genetic variation in the diploid cell, in part by the exchange of genetic information between the pairs of chromosomes after they align (recombination). Thus, on this view, [28] an advantage of meiosis is that it facilitates the generation of genomic diversity among progeny, allowing adaptation to adverse changes in the ...
Homology (biology), any characteristic of biological organisms that is derived from a common ancestor Sequence homology , biological homology between DNA, RNA, or protein sequences Homologous chromosomes , chromosomes in a biological cell that pair up (synapse) during meiosis
It usually occurs between sequences of DNA that have been previously duplicated through evolution, and therefore have low copy repeats (LCRs). These repeat elements typically range from 10–300 kb in length and share 95-97% sequence identity. [4] During meiosis, LCRs can misalign and subsequent crossing-over can result in genetic rearrangement ...
The process of meiosis I is generally longer than meiosis II because it takes more time for the chromatin to replicate and for the homologous chromosomes to be properly oriented and segregated by the processes of pairing and synapsis in meiosis I. [7] During meiosis, genetic recombination (by random segregation) and crossing over produces ...
During meiosis, 5 of X form one chain, and 5 of Y form another chain. Thus, they behave effectively as a typical XY chromosomal system, except each of X and Y is broken into 5 parts, with the effect at recombinations occur very frequently at 4 particular points. [ 17 ]