Search results
Results from the WOW.Com Content Network
In fluid dynamics, dynamic pressure (denoted by q or Q and sometimes called velocity pressure) is the quantity defined by: [1] = where (in SI units): q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s.
p Total is the total fluid pressure. p Static is the static pressure, which strictly depends on depth. p Dynamic is the fluid pressure caused by fluid motion. Since water is an incompressible fluid, the dynamic pressure component of the total pressure can be expressed in terms of the water density and the water velocity as is shown in Equation 2.
The mechanical feedback has been replaced by an electric feedback with a position transducer. Integrated electronics close the position loop for the spool. These valves are suitable for electrohydraulic position, velocity, pressure or force control systems with extremely high dynamic response requirements.
Simplified diagram of linear dashpot. A dashpot, also known as a damper [citation needed], is a mechanical device that resists motion via viscous friction. [1] The resulting force is proportional to the velocity, but acts in the opposite direction, [2] slowing the motion and absorbing energy.
The pressure value that is attempted to compute, is such that when plugged into momentum equations a divergence-free velocity field results. The mass imbalance is often also used for control of the outer loop. The name of this class of methods stems from the fact that the correction of the velocity field is computed through the pressure-field.
Dashboard instruments displaying various car and engine conditions. Where the dashboard originally included an array of simple controls (e.g., the steering wheel) and instrumentation to show speed, fuel level and oil pressure, the modern dashboard may accommodate a broad array of gauges, and controls as well as information, climate control and entertainment systems.
In its simplest electronic form, the instrument consists of an air bottle connected to the external atmosphere through a sensitive air flow meter. As the aircraft changes altitude, the atmospheric pressure outside the aircraft changes and air flows into or out of the air bottle to equalise the pressure inside the bottle and outside the aircraft.
Pressure in the tube can be measured as the moving fluid cannot escape and stagnates. This pressure is the stagnation pressure of the fluid, also known as the total pressure or (particularly in aviation) the pitot pressure. The measured stagnation pressure cannot itself be used to determine the fluid flow velocity (airspeed in aviation) directly.