Search results
Results from the WOW.Com Content Network
Electric charge is a conserved property: the net charge of an isolated system, the quantity of positive charge minus the amount of negative charge, cannot change. Electric charge is carried by subatomic particles. In ordinary matter, negative charge is carried by electrons, and positive charge is carried by the protons in the nuclei of atoms ...
The net quantity of electric charge, the amount of positive charge minus the amount of negative charge in the universe, is always conserved. Charge conservation, considered as a physical conservation law , implies that the change in the amount of electric charge in any volume of space is exactly equal to the amount of charge flowing into the ...
A stronger form of conservation law requires that, for the amount of a conserved quantity at a point to change, there must be a flow, or flux of the quantity into or out of the point. For example, the amount of electric charge at a point is never found to change without an electric current into or out of the point that carries the difference in ...
Electric charge density: ρ Q: Electric charge per unit volume C/m 3: L −3 T I: intensive Electrical conductance: G: Measure for how easily current flows through a material siemens (S = Ω −1) L −2 M −1 T 3 I 2: scalar Electrical conductivity: σ: Measure of a material's ability to conduct an electric current S/m L −3 M −1 T 3 I 2 ...
This charge is sometimes called the Noether charge. Thus, for example, the electric charge is the generator of the U(1) symmetry of electromagnetism. The conserved current is the electric current. In the case of local, dynamical symmetries, associated with every charge is a gauge field; when quantized, the gauge field becomes a gauge boson. The ...
A normal uncharged piece of matter has equal numbers of positive and negative electric charges in each part of it, located close together, so no part of it has a net electric charge. [4]: p.711–712 The positive charges are the atoms' nuclei which are bound into the structure of matter and are not free to move.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
ρ is the free electric charge density (in units of C/m 3) J is the current density J = ρ v {\displaystyle \mathbf {J} =\rho \mathbf {v} } with v as the velocity of the charges. The equation would apply equally to masses (or other conserved quantities), where the word mass is substituted for the words electric charge above.