Search results
Results from the WOW.Com Content Network
A permuted congruential generator (PCG) is a pseudorandom number generation algorithm developed in 2014 by Dr. M.E. O'Neill which applies an output permutation function to improve the statistical properties of a modulo-2 n linear congruential generator.
A random seed (or seed state, or just seed) is a number (or vector) used to initialize a pseudorandom number generator.. A pseudorandom number generator's number sequence is completely determined by the seed: thus, if a pseudorandom number generator is later reinitialized with the same seed, it will produce the same sequence of numbers.
The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8]. A linear congruential generator ( LCG ) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation .
Dice are an example of a mechanical hardware random number generator. When a cubical die is rolled, a random number from 1 to 6 is obtained. Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols is generated that cannot be reasonably predicted better than by random chance.
The Mersenne Twister is a general-purpose pseudorandom number generator (PRNG) developed in 1997 by Makoto Matsumoto (松本 眞) and Takuji Nishimura (西村 拓士). [1] [2] Its name derives from the choice of a Mersenne prime as its period length.
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
An alternative method assigns a random number to each element of the set to be shuffled and then sorts the set according to the assigned numbers. The sorting method has the same asymptotic time complexity as Fisher–Yates: although general sorting is O(n log n), numbers are efficiently sorted using Radix sort in O(n) time. Like the Fisher ...
In data mining, k-means++ [1] [2] is an algorithm for choosing the initial values (or "seeds") for the k-means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k-means problem—a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm.