Search results
Results from the WOW.Com Content Network
Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 3.69 –5.96 –5.87 K b & K f [1] Lauric acid:
Ethylbenzene is an organic compound with the formula C 6 H 5 CH 2 CH 3. It is a highly flammable, colorless liquid with an odor similar to that of gasoline . This monocyclic aromatic hydrocarbon is important in the petrochemical industry as a reaction intermediate in the production of styrene , the precursor to polystyrene , a common plastic ...
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
Boiling points, Master List format [ edit ] In the following table, the use row is the value recommended for use in other Wikipedia pages in order to maintain consistency across content.
Boca Raton, Florida, 2003; Section 6, Fluid Properties; Critical Constants. Also agrees with Celsius values from Section 4: Properties of the Elements and Inorganic Compounds, Melting, Boiling, Triple, and Critical Point Temperatures of the Elements Estimated accuracy for Tc and Pc is indicated by the number of digits.
The following list has substances known to be gases, but with an unknown boiling point. Fluoroamine; Trifluoromethyl trifluoroethyl trioxide CF 3 OOOCF 2 CF 3 boils between 10 and 20° [142] Bis-trifluoromethyl carbonate boils between −10 and +10° [37] possibly +12, freezing −60° [143]
Melting point: 5.5 C Water solubility: negligible Specific gravity: 0.87 Principal hazards *** Benzene is a carcinogen (cancer-causing agent). *** Very flammable. The pure material, and any solutions containing it, constitute a fire risk. Safe handling: Benzene should NOT be used at all unless no safer alternatives are available.
In thermodynamics, Trouton's rule states that the (molar) entropy of vaporization is almost the same value, about 85–88 J/(K·mol), for various kinds of liquids at their boiling points. [1] The entropy of vaporization is defined as the ratio between the enthalpy of vaporization and the boiling temperature.