enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Iron-oxidizing bacteria - Wikipedia

    en.wikipedia.org/wiki/Iron-oxidizing_bacteria

    The anoxygenic phototrophic iron oxidation was the first anaerobic metabolism to be described within the iron anaerobic oxidation metabolism. The photoferrotrophic bacteria use Fe 2+ as electron donor and the energy from light to assimilate CO 2 into biomass through the Calvin Benson-Bassam cycle (or rTCA cycle) in a neutrophilic environment (pH 5.5-7.2), producing Fe 3+ oxides as a waste ...

  3. Siderophore - Wikipedia

    en.wikipedia.org/wiki/Siderophore

    The strict homeostasis of iron leads to a free concentration of about 10 −24 mol L −1, [11] hence there are great evolutionary pressures put on pathogenic bacteria to obtain this metal. For example, the anthrax pathogen Bacillus anthracis releases two siderophores, bacillibactin and petrobactin , to scavenge ferric ion from iron containing ...

  4. Metabolic waste - Wikipedia

    en.wikipedia.org/wiki/Metabolic_waste

    Nitrates and nitrites are wastes produced by nitrifying bacteria, just as sulfur and sulfates are produced by the sulfur-reducing bacteria and sulfate-reducing bacteria. Insoluble iron waste can be made by iron bacteria by using soluble forms. In plants, resins, fats, waxes, and complex organic chemicals are exuded from plants, e.g., the latex ...

  5. Enterobactin - Wikipedia

    en.wikipedia.org/wiki/Enterobactin

    Enterobactin (also known as enterochelin) is a high affinity siderophore that acquires iron for microbial systems. It is primarily found in Gram-negative bacteria, such as Escherichia coli and Salmonella typhimurium. [1] Enterobactin is the strongest siderophore known, binding to the ferric ion (Fe 3+) with affinity K = 10 52 M −1. [2]

  6. Bioremediation - Wikipedia

    en.wikipedia.org/wiki/Bioremediation

    Bioremediation broadly refers to any process wherein a biological system (typically bacteria, microalgae, fungi in mycoremediation, and plants in phytoremediation), living or dead, is employed for removing environmental pollutants from air, water, soil, flue gasses, industrial effluents etc., in natural or artificial settings. [1]

  7. Biological roles of the elements - Wikipedia

    en.wikipedia.org/wiki/Biological_roles_of_the...

    It is selectively taken up by plants, so there are a variety of possible roles in plant metabolism. [44] There is limited medical use. [11] Inhibits iron uptake and metabolism in a variety of plants and bacteria. [44] germanium: 32: 2a: Some plants will take it up, but it has no known metabolic role. [11] Some salts are deadly to some bacteria ...

  8. Organisms involved in water purification - Wikipedia

    en.wikipedia.org/wiki/Organisms_involved_in...

    A water-purifying plant (Iris pseudacorus) in growth after winter (leaves die at that time of year) The choice of plants in engineered wet-lands or managed lagoons is dependent on the purification requirements of the system and this may involve plantings of varying plant species at a range of depths to achieve the required goal.

  9. Phytoremediation - Wikipedia

    en.wikipedia.org/wiki/Phytoremediation

    Phytoremediation technologies use living plants to clean up soil, air and water contaminated with hazardous contaminants. [1] It is defined as "the use of green plants and the associated microorganisms, along with proper soil amendments and agronomic techniques to either contain, remove or render toxic environmental contaminants harmless". [2]