enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fast Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fast_Fourier_transform

    A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT). A Fourier transform converts a signal from its original domain (often time or space) to a representation in the frequency domain and vice versa.

  3. Cooley–Tukey FFT algorithm - Wikipedia

    en.wikipedia.org/wiki/Cooley–Tukey_FFT_algorithm

    The Cooley–Tukey algorithm, named after J. W. Cooley and John Tukey, is the most common fast Fourier transform (FFT) algorithm. It re-expresses the discrete Fourier transform (DFT) of an arbitrary composite size = in terms of N 1 smaller DFTs of sizes N 2, recursively, to reduce the computation time to O(N log N) for highly composite N (smooth numbers).

  4. Split-radix FFT algorithm - Wikipedia

    en.wikipedia.org/wiki/Split-radix_FFT_algorithm

    The split-radix FFT is a fast Fourier transform (FFT) algorithm for computing the discrete Fourier transform (DFT), and was first described in an initially little-appreciated paper by R. Yavne (1968) and subsequently rediscovered simultaneously by various authors in 1984.

  5. Schönhage–Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Schönhage–Strassen...

    The Schönhage–Strassen algorithm is based on the fast Fourier transform (FFT) method of integer multiplication. This figure demonstrates multiplying 1234 × 5678 = 7006652 using the simple FFT method. Base 10 is used in place of base 2 w for illustrative purposes. Schönhage (on the right) and Strassen (on the left) playing chess in ...

  6. Overlap–save method - Wikipedia

    en.wikipedia.org/wiki/Overlap–save_method

    When the DFT and IDFT are implemented by the FFT algorithm, the pseudocode above requires about N (log 2 (N) + 1) complex multiplications for the FFT, product of arrays, and IFFT. [ E ] Each iteration produces N-M+1 output samples, so the number of complex multiplications per output sample is about :

  7. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    The most common fast convolution algorithms use fast Fourier transform (FFT) algorithms via the circular convolution theorem. Specifically, the circular convolution of two finite-length sequences is found by taking an FFT of each sequence, multiplying pointwise, and then performing an inverse FFT. Convolutions of the type defined above are then ...

  8. Multidimensional transform - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_transform

    where "FFT" denotes the fast Fourier transform, and f is the spatial frequency spans from 0 to N/2 – 1. The proposed FFT-based imaging approach is diagnostic technology to ensure a long life and stable to culture arts. This is a simple, cheap which can be used in museums without affecting their daily use.

  9. Fast Algorithms for Multidimensional Signals - Wikipedia

    en.wikipedia.org/wiki/Fast_Algorithms_for...

    This is a naive approach, however, we already know that an N-point 1-D DFT can be computed with far fewer than multiplications by using the Fast Fourier Transform (FFT) algorithm. As described in the next section we can develop Fast Fourier transforms for calculating 2-D or higher dimensional DFTs as well [3]