Search results
Results from the WOW.Com Content Network
In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.
Exponential function: raises a fixed number to a variable power. Hyperbolic functions: formally similar to the trigonometric functions. Inverse hyperbolic functions: inverses of the hyperbolic functions, analogous to the inverse circular functions. Logarithms: the inverses of exponential functions; useful to solve equations involving exponentials.
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.
In mathematics, an exponential field is a field with a further unary operation that is a homomorphism from the field's additive group to its multiplicative group. This generalizes the usual idea of exponentiation on the real numbers , where the base is a chosen positive real number.
In elementary number theory, the lifting-the-exponent lemma (LTE lemma) provides several formulas for computing the p-adic valuation of special forms of integers. The lemma is named as such because it describes the steps necessary to "lift" the exponent of p {\displaystyle p} in such expressions.
A more general framework where the term 'exponential polynomial' may be found is that of exponential functions on abelian groups. Similarly to how exponential functions on exponential fields are defined, given a topological abelian group G a homomorphism from G to the additive group of the complex numbers is called an additive function, and a homomorphism to the multiplicative group of nonzero ...
A double exponential function (red curve) compared to a single exponential function (blue curve). A double exponential function is a constant raised to the power of an exponential function . The general formula is f ( x ) = a b x = a ( b x ) {\displaystyle f(x)=a^{b^{x}}=a^{(b^{x})}} (where a >1 and b >1), which grows much more quickly than an ...