Search results
Results from the WOW.Com Content Network
If a nozzle is under- or overexpanded, then loss of efficiency occurs relative to an ideal nozzle. Grossly overexpanded nozzles have improved efficiency relative to an underexpanded nozzle (though are still less efficient than a nozzle with the ideal expansion ratio), however the exhaust jet is unstable. [1]
If under or overexpanded then loss of efficiency occurs. Grossly overexpanded nozzles have improved efficiency, but the exhaust jet is unstable. Conventional nozzles become progressively more underexpanded as they gain altitude. [1]
The XLR-129 featured an expanding nozzle. The extension is almost cylindrical compared to the inner section. The expanding nozzle is a type of rocket nozzle that, unlike traditional designs, maintains its efficiency at a wide range of altitudes.
This is referred as overexpanded flow because in this case the pressure at the nozzle exit is lower than that in the ambient (the back pressure)- i.e. the flow has been expanded by the nozzle too much. [13] A further lowering of the back pressure changes and weakens the wave pattern in the jet.
A propelling nozzle is a nozzle that converts the internal energy of a working gas into propulsive force; it is the nozzle, which forms a jet, that separates a gas turbine, or gas generator, from a jet engine.
Diagram of a de Laval nozzle, showing approximate flow velocity (v), together with the effect on temperature (T) and pressure (p) A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence.
Shock diamonds are the bright areas seen in the exhaust of this statically mounted Pratt & Whitney J58 engine on full afterburner.. Shock diamonds (also known as Mach diamonds or thrust diamonds, and less commonly Mach disks) are a formation of standing wave patterns that appear in the supersonic exhaust plume of an aerospace propulsion system, such as a supersonic jet engine, rocket, ramjet ...
XRS-2200 linear aerospike engine for the X-33 program being tested at the Stennis Space Center. The aerospike engine is a type of rocket engine that maintains its aerodynamic efficiency across a wide range of altitudes. [1]