Search results
Results from the WOW.Com Content Network
Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...
Rational number arithmetic is the branch of arithmetic that deals with the manipulation of numbers that can be expressed as a ratio of two integers. [93] Most arithmetic operations on rational numbers can be calculated by performing a series of integer arithmetic operations on the numerators and the denominators of the involved numbers.
This category represents all rational numbers, that is, those real numbers which can be represented in the form: ...where and are integers and is ...
dc: "Desktop Calculator" arbitrary-precision RPN calculator that comes standard on most Unix-like systems. KCalc, Linux based scientific calculator; Maxima: a computer algebra system which bignum integers are directly inherited from its implementation language Common Lisp. In addition, it supports arbitrary-precision floating-point numbers ...
In mathematics, the notion of number has been extended over the centuries to include zero (0), [3] negative numbers, [4] rational numbers such as one half (), real numbers such as the square root of 2 and π, [5] and complex numbers [6] which extend the real numbers with a square root of −1 (and its combinations with real numbers by adding or ...
The set of rational numbers is not complete. For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of the positive square root of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root of 2).
Every positive rational number can be represented by an Egyptian fraction. Sums of this type, and similar sums also including 2 3 {\displaystyle {\tfrac {2}{3}}} and 3 4 {\displaystyle {\tfrac {3}{4}}} as summands , were used as a serious notation for rational numbers by the ancient Egyptians, and continued to be used by other civilizations ...