Search results
Results from the WOW.Com Content Network
The Beauty of Fractals is a 1986 book by Heinz-Otto Peitgen and Peter Richter which publicises the fields of complex dynamics, chaos theory and the concept of fractals. It is lavishly illustrated and as a mathematics book became an unusual success. The book includes a total of 184 illustrations, including 88 full-colour pictures of Julia sets.
Chaos theory (or chaology [1]) is an interdisciplinary area of scientific study and branch of mathematics. It focuses on underlying patterns and deterministic laws of dynamical systems that are highly sensitive to initial conditions. These were once thought to have completely random states of disorder and irregularities. [2]
Chaos communications is an application of chaos theory which is aimed to provide security in the transmission of information performed through telecommunications technologies. For secure communications, one has to understand that the contents of the message transmitted are inaccessible to possible eavesdroppers.
The book sparked widespread popular interest in fractals and contributed to chaos theory and other fields of science and mathematics. Mandelbrot also put his ideas to work in cosmology. He offered in 1974 a new explanation of Olbers' paradox (the "dark night sky" riddle), demonstrating the consequences of fractal theory as a sufficient, but not ...
Chaotic cryptology is the application of mathematical chaos theory to the practice of cryptography, the study or techniques used to privately and securely transmit information with the presence of a third-party or adversary. Since first being investigated by Robert Matthews in 1989, [1] the use of chaos in cryptography has attracted much ...
The Minkowski sausage [3] or Minkowski curve is a fractal first proposed by and named for Hermann Minkowski as well as its casual resemblance to a sausage or sausage links. The initiator is a line segment and the generator is a broken line of eight parts one fourth the length.
Fractal fern in four states of construction. Highlighted triangles show how the half of one leaflet is transformed to half of one whole leaf or frond.. Though Barnsley's fern could in theory be plotted by hand with a pen and graph paper, the number of iterations necessary runs into the tens of thousands, which makes use of a computer practically mandatory.
IFS fractals are more related to set theory than fractal geometry. [1] They were introduced in 1981. IFS fractals, as they are normally called, can be of any number of dimensions, but are commonly computed and drawn in 2D. The fractal is made up of the union of several copies of itself, each copy being transformed by a function (hence "function ...