Search results
Results from the WOW.Com Content Network
Chemical structure of 2-bromophenol. A bromophenol is an organic compound consisting of hydroxyl groups and bromine atoms bonded to a benzene ring. They may be viewed as hydroxyl derivatives of bromobenzene, or as brominated derivatives of phenol.
Bromobenzene is an aryl bromide and the simplest of the bromobenzenes, consisting of a benzene ring substituted with one bromine atom. Its chemical formula is C 6 H 5 Br . It is a colourless liquid although older samples can appear yellow.
[2] Oxidative coupling of phenol by VCl 4. Coproducts including vanadium(III) and hydrogen chloride are not shown. Oxidative phenol couplings can occur through either inner sphere or outer sphere processes. In inner sphere processes, the phenolic substrate coordinates to the metal center to give a phenoxide complex.
Substrates containing two phenols (or an aniline and a phenol; see equation (8) below for a related example), undergo oxidative coupling in the presence of hypervalent iodine(III) reagents. Coupling of both the ortho and para positions is possible; however, the use of bulky silyl-protected phenols provides complete selectivity for para coupling.
When 1-[14 C]-1-chlorobenzene was subjected to aqueous NaOH at 395 °C, ipso substitution product 1-[14 C]-phenol was formed in 54% yield, while cine substitution product 2-[14 C]-phenol was formed in 43% yield, indicating that an elimination-addition (benzyne) mechanism is predominant, with perhaps a small amount of product from addition ...
Phenol is an ortho/para director, but in a presence of base, the reaction is more rapid. It is due to the higher reactivity of phenolate anion . The negative oxygen was 'forced' to give electron density to the carbons (because it has a negative charge, it has an extra +I effect).
This intermediate collapses with the elimination of the azo group to yield an aryldiazene with an ortho carboxylate group, which extrudes nitrogen gas to afford the anionic form of the observed benzoic acid product, presumably through the generation and immediate protonation of an aryl anion intermediate. The product is isolated upon acidic workup.
The Gattermann reaction (also known as the Gattermann formylation and the Gattermann salicylaldehyde synthesis) is a chemical reaction in which aromatic compounds are formylated by a mixture of hydrogen cyanide (HCN) and hydrogen chloride (HCl) in the presence of a Lewis acid catalyst such as aluminium chloride (AlCl 3). [1]