Search results
Results from the WOW.Com Content Network
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
One obvious example is the "find-similar-document" query, on traditional text corpora or the World-Wide Web. More generally, a similarity measure can be used to cluster objects , such as for collaborative filtering in a recommender system , in which “similar” users and items are grouped based on the users’ preferences.
In addition to model-checking, SPIN can also operate as a simulator, following one possible execution path through the system and presenting the resulting execution trace to the user. Unlike many model-checkers, SPIN does not actually perform model-checking itself, but instead generates C sources for a problem-specific model checker.
In statistics, Mallows's, [1] [2] named for Colin Lingwood Mallows, is used to assess the fit of a regression model that has been estimated using ordinary least squares.It is applied in the context of model selection, where a number of predictor variables are available for predicting some outcome, and the goal is to find the best model involving a subset of these predictors.
Simplex vertices are ordered by their value, with 1 having the lowest (best) value. The Nelder–Mead method (also downhill simplex method , amoeba method , or polytope method ) is a numerical method used to find the minimum or maximum of an objective function in a multidimensional space.
The starting point for this new version of the validation index is the result of a given soft clustering algorithm (e.g. fuzzy c-means), shaped with the computed clustering partitions and membership values associating the elements with the clusters. In the soft domain, each element of the system belongs to every classes, given the membership ...
Prefix sums are trivial to compute in sequential models of computation, by using the formula y i = y i − 1 + x i to compute each output value in sequence order. However, despite their ease of computation, prefix sums are a useful primitive in certain algorithms such as counting sort, [1] [2] and they form the basis of the scan higher-order function in functional programming languages.
In this example, the Gauss–Newton algorithm will be used to fit a model to some data by minimizing the sum of squares of errors between the data and model's predictions. In a biology experiment studying the relation between substrate concentration [ S ] and reaction rate in an enzyme-mediated reaction, the data in the following table were ...