Search results
Results from the WOW.Com Content Network
Pyridine is a basic heterocyclic organic compound with the chemical formula C 5 H 5 N. It is structurally related to benzene, with one methine group (=CH−) replaced by a nitrogen atom (=N−). It is a highly flammable, weakly alkaline, water-miscible liquid with a distinctive, unpleasant fish
The first reaction is the formation of the N-2,4-dinitrophenyl-pyridinium salt (2). This salt is typically isolated and purified by recrystallization. The formation of the DNP-pyridinium salt. Upon heating a primary amine with the N-2,4-dinitrophenyl-pyridinium salt (2), the addition of the amine leads to the opening of the pyridinium ring.
Pyridine-N-oxide is the heterocyclic compound with the formula C 5 H 5 NO. This colourless, hygroscopic solid is the product of the oxidation of pyridine. It was originally prepared using peroxyacids as the oxidising agent. The compound is used infrequently as an oxidizing reagent in organic synthesis. [1]
Compared to benzene, the rate of electrophilic substitution on pyridine is much slower, due to the higher electronegativity of the nitrogen atom. Additionally, the nitrogen in pyridine easily gets a positive charge either by protonation (from nitration or sulfonation) or Lewis acids (such as AlCl 3) used to catalyze the reaction. This makes the ...
A workup step with acid is included to ensure formation of 2-aminopyridine. Reaction progress can be measured by the formation of hydrogen gas and red color from σ-adduct formation. [3] Sodium amide is a handy reagent for the Chichibabin reaction but handling it can be dangerous and caution is advised. [4] σ-adduct (Meisenheimer adduct) formation
In organic chemistry, nitration is a general class of chemical processes for the introduction of a nitro group (−NO 2) into an organic compound. The term also is applied incorrectly to the different process of forming nitrate esters ( −ONO 2 ) between alcohols and nitric acid (as occurs in the synthesis of nitroglycerin ).
Reaction mechanism for the amine formation from a carboxylic acid via Schmidt reaction. In the reaction mechanism for the Schmidt reaction of ketones, the carbonyl group is activated by protonation for nucleophilic addition by the azide, forming azidohydrin 3, which loses water in an elimination reaction to diazoiminium 5.
Kröhnke condensation of enamino nitrile 20 with enone 21 yielded fused pyridine 22. Figure 5. The mechanism of this Kröhnke-type reaction likely proceeds via a vinylogous cyanamide 23 which undergoes elimination of hydrocyanic acid, deprotonation to form enamine 24 and cyclization to form intermediate 25, which is then dehydrated to form the ...