Search results
Results from the WOW.Com Content Network
In esterifications and acylations, pyridine activates the carboxylic acid chlorides and anhydrides. Even more active in these reactions are the derivatives 4-dimethylaminopyridine (DMAP) and 4-(1-pyrrolidinyl) pyridine. Pyridine is also used as a base in some condensation reactions. [114] Elimination reaction with pyridine to form pyridinium
Compared to benzene, the rate of electrophilic substitution on pyridine is much slower, due to the higher electronegativity of the nitrogen atom. Additionally, the nitrogen in pyridine easily gets a positive charge either by protonation (from nitration or sulfonation) or Lewis acids (such as AlCl 3) used to catalyze the reaction. This makes the ...
The oxidation of pyridine can be achieved with a number of peracids including peracetic acid and perbenzoic acid. [3] Oxidation can also be effected by a modified Dakin reaction using a urea-hydrogen peroxide complex, [4] and sodium perborate [5] or, using methylrhenium trioxide (CH 3 ReO 3) as catalyst, with sodium percarbonate. [6]
The phrase ipso nitration was first used by Perrin and Skinner in 1971, in an investigation into chloroanisole nitration. [18] In one protocol, 4-chloro- n -butylbenzene is reacted with sodium nitrite in t -butanol in the presence of 0.5 mol% Pd 2 (dba) 3 , a biarylphosphine ligand and a phase-transfer catalyst to provide 4-nitro- n -butylbenzene.
The reaction mechanism involves the acylation and activation of the acid 1 to the mixed anhydride 3. The amide will serve as a nucleophile for the cyclization forming the azlactone 4. Deprotonation and acylation of the azlactone forms the key carbon-carbon bond. Subsequent ring-opening of 6 and decarboxylation give the final keto-amide product.
Kröhnke condensation of enamino nitrile 20 with enone 21 yielded fused pyridine 22. Figure 5. The mechanism of this Kröhnke-type reaction likely proceeds via a vinylogous cyanamide 23 which undergoes elimination of hydrocyanic acid, deprotonation to form enamine 24 and cyclization to form intermediate 25, which is then dehydrated to form the ...
The first reaction is the formation of the N-2,4-dinitrophenyl-pyridinium salt (2). This salt is typically isolated and purified by recrystallization. The formation of the DNP-pyridinium salt. Upon heating a primary amine with the N-2,4-dinitrophenyl-pyridinium salt (2), the addition of the amine leads to the opening of the pyridinium ring.
The Boger pyridine synthesis is a cycloaddition approach to the formation of pyridines named after its inventor Dale L. Boger, who first reported it in 1981. [1] The reaction is a form of inverse-electron demand Diels-Alder reaction in which an enamine reacts with a 1,2,4-triazine to form the pyridine nucleus.