Search results
Results from the WOW.Com Content Network
In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by [1] [2] = or equivalently + + =, where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively).
Euler's theorem in geometry gives a formula for the distance between the incentre and circumcentre of a circle, as a function of the inradius and circumradius : d = R ( R − 2 r ) . {\displaystyle d={\sqrt {R(R-2r)}}.}
Fuss' theorem gives a relation between the inradius r, the circumradius R and the distance x between the incenter I and the circumcenter O, for any bicentric quadrilateral. The relation is [1] [11] [22] + (+) =, or equivalently
The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center. More generally, an n-sided polygon with all its vertices on the same circle, also called the circumscribed circle, is called a cyclic polygon, or in the special case n = 4, a cyclic quadrilateral.
The radius of the inscribed circle is the apothem (the shortest distance from the center to the boundary of the regular polygon). For any regular polygon, the relations between the common edge length a, the radius r of the incircle, and the radius R of the circumcircle are:
The distance from the incenter to the centroid is less than one third the length of the longest median of the triangle. [9] By Euler's theorem in geometry, the squared distance from the incenter I to the circumcenter O is given by [10] [11] = (),
By Euler's theorem in geometry on the distance between the circumcenter and incenter of a triangle, two concentric circles (with that distance being zero) are the circumcircle and incircle of a triangle if and only if the radius of one is twice the radius of the other, in which case the triangle is equilateral. [5]: p. 198
the circumcentre, which is the centre of the circle that passes through all three vertices; the centroid or centre of mass, the point on which the triangle would balance if it had uniform density; the incentre, the centre of the circle that is internally tangent to all three sides of the triangle;