Search results
Results from the WOW.Com Content Network
Integration by parts is a heuristic rather than a purely mechanical process for solving integrals; given a single function to integrate, the typical strategy is to carefully separate this single function into a product of two functions u(x)v(x) such that the residual integral from the integration by parts formula is easier to evaluate than the ...
Partitions of a 4-element set ordered by refinement. A partition α of a set X is a refinement of a partition ρ of X—and we say that α is finer than ρ and that ρ is coarser than α—if every element of α is a subset of some element of ρ. Informally, this means that α is a further fragmentation of ρ. In that case, it is written that ...
Notice that in general, for a step function, the value of the second type of approximation doesn't depend on the partition, as long as the partition is a refinement of the partition defining the step function, whereas the value of the first type of approximation does depend on the fineness of the partition, even when it is a refinement of the ...
Generally, a partition is a division of a whole into non-overlapping parts. Among the kinds of partitions considered in mathematics are partition of a set or an ordered partition of a set,
For example, let C be the Smith–Volterra–Cantor set, and let I C be its indicator function. Because C is not Jordan measurable , I C is not Riemann integrable. Moreover, no function g equivalent to I C is Riemann integrable: g , like I C , must be zero on a dense set, so as in the previous example, any Riemann sum of g has a refinement ...
The partition algebra is an associative algebra with a basis of set-partition diagrams and multiplication given by diagram concatenation. [1] Its subalgebras include diagram algebras such as the Brauer algebra, the Temperley–Lieb algebra, or the group algebra of the symmetric group. Representations of the partition algebra are built from sets ...
In general, if the integer n is partitioned into a sum in which "1" appears j 1 times, "2" appears j 2 times, and so on, then the number of partitions of a set of size n that collapse to that partition of the integer n when the members of the set become indistinguishable is the corresponding coefficient in the polynomial.
In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...