Search results
Results from the WOW.Com Content Network
There are two important foramina, or windows, two important fissures, or grooves, and one canal surrounding the globe in the orbit. There is a supraorbital foramen, an infraorbital foramen, a superior orbital fissure, an inferior orbital fissure and the optic canal, each of which contains structures that are crucial to normal eye functioning.
'sieve') is an unpaired bone in the skull that separates the nasal cavity from the brain. It is located at the roof of the nose, between the two orbits. The cubical bone is lightweight due to a spongy construction. The ethmoid bone is one of the bones that make up the orbit of the eye.
Gross anatomy has become a key part of visual arts. Basic concepts of how muscles and bones function and deform with movement is key to drawing, painting or animating a human figure. Many books such as "Human Anatomy for Artists: The Elements of Form", are written as a guide to drawing the human body anatomically correctly. [4]
In human anatomy, the infraorbital foramen is one of two small holes in the skull's upper jawbone (maxillary bone), located below the eye socket and to the left and right of the nose. Both holes are used for blood vessels and nerves. In anatomical terms, it is located below the infraorbital margin of the orbit.
Interventricular foramen, channels connecting ventricles in the brain; Intervertebral foramen, foramina formed between vertebrae; Lesser sciatic foramen, an opening between the pelvis and the posterior thigh; Obturator foramen, the opening created by the ischium and pubis bones of the pelvis
The optic foramen is the opening to the optic canal.The canal is located in the sphenoid bone; it is bounded medially by the body of the sphenoid and laterally by the lesser wing of the sphenoid.
Subfornical organ of a mouse. In this photomicrograph, the subfornical organ (arrow) is located on the undersurface of the fornix in the upper part of the third ventricle. The cells in this coronal section of the brain were colored with a bluish dye ("Nissl stain"). The thalamus is at the bottom of the photo. The bar at the lower right ...
The visual system is the physiological basis of visual perception (the ability to detect and process light).The system detects, transduces and interprets information concerning light within the visible range to construct an image and build a mental model of the surrounding environment.