Search results
Results from the WOW.Com Content Network
In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.
The affinity laws (also known as the "Fan Laws" or "Pump Laws") for pumps/fans are used in hydraulics, hydronics and/or HVAC to express the relationship between variables involved in pump or fan performance (such as head, volumetric flow rate, shaft speed) and power. They apply to pumps, fans, and hydraulic turbines. In these rotary implements ...
Hydraulic calculations verify that the water flowrate (or water mixed with additives like firefighting foam concentrate) through piping networks for the purpose of suppressing or extinguishing a fire will be sufficient to meet design objectives. The hydraulic calculation procedure is defined in the applicable reference model codes such as that ...
The portion of water available at the delivery pipe will be reduced by the ratio of the delivery head to the supply head. Thus if the source is 2 metres (6.6 ft) above the ram and the water is lifted to 10 metres (33 ft) above the ram, only 20% of the supplied water can be available, the other 80% being spilled via the waste valve.
The basic function of a pump is to do work on a liquid. It can be used to transport and compress a liquid. In industries heavy-duty pumps are used to move water, chemicals, slurry, food, oil and so on. Depending on their action, pumps are classified into two types — Centrifugal Pumps and Positive Displacement Pumps. While centrifugal pumps ...
The same logic applies downstream to determine that the water surface follows an M3 profile from the gate until the depth reaches the conjugate depth of the normal depth at which point a hydraulic jump forms to raise the water surface to the normal depth. Step 4: Use the Newton Raphson Method to solve the M1 and M3 surface water profiles. The ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
With the help of these equations the head developed by a pump and the head utilised by a turbine can be easily determined. As the name suggests these equations were formulated by Leonhard Euler in the eighteenth century. [1] These equations can be derived from the moment of momentum equation when applied for a pump or a turbine.