enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multilevel model - Wikipedia

    en.wikipedia.org/wiki/Multilevel_model

    A simple way to incorporate this into the regression model would be to add an additional independent categorical variable to account for the location (i.e. a set of additional binary predictors and associated regression coefficients, one per location). This would have the effect of shifting the mean income up or down—but it would still assume ...

  3. Bayesian hierarchical modeling - Wikipedia

    en.wikipedia.org/wiki/Bayesian_hierarchical_modeling

    Bayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method. [1] The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the ...

  4. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    First, regression analysis is widely used for prediction and forecasting, where its use has substantial overlap with the field of machine learning. Second, in some situations regression analysis can be used to show causal relationships between the independent and dependent variables. Importantly, regressions by themselves only reveal ...

  5. Hierarchical generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_generalized...

    In a hierarchical model, observations are grouped into clusters, and the distribution of an observation is determined not only by common structure among all clusters but also by the specific structure of the cluster where this observation belongs. So a random effect component, different for different clusters, is introduced into the model.

  6. Marginal model - Wikipedia

    en.wikipedia.org/wiki/Marginal_model

    In statistics, marginal models (Heagerty & Zeger, 2000) are a technique for obtaining regression estimates in multilevel modeling, also called hierarchical linear models. People often want to know the effect of a predictor/explanatory variable X, on a response variable Y. One way to get an estimate for such effects is through regression analysis.

  7. Multilevel modeling for repeated measures - Wikipedia

    en.wikipedia.org/wiki/Multilevel_Modeling_for...

    One application of multilevel modeling (MLM) is the analysis of repeated measures data. Multilevel modeling for repeated measures data is most often discussed in the context of modeling change over time (i.e. growth curve modeling for longitudinal designs); however, it may also be used for repeated measures data in which time is not a factor.

  8. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    Comparison of models, including model selection or model averaging; Preparation of the results for a particular audience; All these tasks are part of the Exploratory analysis of Bayesian models approach and successfully performing them is central to the iterative and interactive modeling process. These tasks require both numerical and visual ...

  9. Multivariate statistics - Wikipedia

    en.wikipedia.org/wiki/Multivariate_statistics

    Multivariate analysis can be complicated by the desire to include physics-based analysis to calculate the effects of variables for a hierarchical "system-of-systems". Often, studies that wish to use multivariate analysis are stalled by the dimensionality of the problem.