enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    Given a quadratic polynomial of the form + + it is possible to factor out the coefficient a, and then complete the square for the resulting monic polynomial. Example: + + = [+ +] = [(+) +] = (+) + = (+) + This process of factoring out the coefficient a can further be simplified by only factorising it out of the first 2 terms.

  3. Monic polynomial - Wikipedia

    en.wikipedia.org/wiki/Monic_polynomial

    Let () be a polynomial equation, where P is a univariate polynomial of degree n.If one divides all coefficients of P by its leading coefficient, one obtains a new polynomial equation that has the same solutions and consists to equate to zero a monic polynomial.

  4. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    When the monic quadratic equation with real coefficients is of the form x 2 = c, the general solution described above is useless because division by zero is not well defined. As long as c is positive, though, it is always possible to transform the equation by subtracting a perfect square from both sides and proceeding along the lines ...

  5. Companion matrix - Wikipedia

    en.wikipedia.org/wiki/Companion_matrix

    Not every square matrix is similar to a companion matrix, but every square matrix is similar to a block diagonal matrix made of companion matrices. If we also demand that the polynomial of each diagonal block divides the next one, they are uniquely determined by A , and this gives the rational canonical form of A .

  6. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    Because (a + 1) 2 = a, a + 1 is the unique solution of the quadratic equation x 2 + a = 0. On the other hand, the polynomial x 2 + ax + 1 is irreducible over F 4, but it splits over F 16, where it has the two roots ab and ab + a, where b is a root of x 2 + x + a in F 16. This is a special case of Artin–Schreier theory.

  7. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    A similar but more complicated method works for cubic equations, which have three resolvents and a quadratic equation (the "resolving polynomial") relating ⁠ ⁠ and ⁠ ⁠, which one can solve by the quadratic equation, and similarly for a quartic equation (degree 4), whose resolving polynomial is a cubic, which can in turn be solved. [14]

  8. Durand–Kerner method - Wikipedia

    en.wikipedia.org/wiki/Durand–Kerner_method

    Choosing a basis, the multiplication operator is represented by its coefficient matrix A, the companion matrix of ƒ(X) for this basis. Since every polynomial can be reduced modulo ƒ(X) to a polynomial of degree n − 1 or lower, the space of residue classes can be identified with the space of polynomials of degree bounded by n − 1.

  9. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    Qin Jiushao's algorithm for solving the quadratic polynomial equation + = result: x =840 [ 11 ] Horner's paper, titled "A new method of solving numerical equations of all orders, by continuous approximation", [ 12 ] was read before the Royal Society of London, at its meeting on July 1, 1819, with a sequel in 1823. [ 12 ]