Search results
Results from the WOW.Com Content Network
The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of amplitude (see below), which are all functions of the magnitude of the differences between the variable's extreme values. In older texts, the phase of a periodic function is sometimes called the amplitude. [1]
Illustration of the envelope (the slowly varying red curve) of an amplitude-modulated wave. The fast varying blue curve is the carrier wave, which is being modulated. The amplitude of a wave may be constant (in which case the wave is a c.w. or continuous wave), or may be modulated so as to vary with time and/or
In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input and outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency.
The phase of a simple harmonic oscillation or sinusoidal signal is the value of in the following functions: = (+) = (+) = (+) where , , and are constant parameters called the amplitude, frequency, and phase of the sinusoid.
The envelope thus generalizes the concept of a constant amplitude into an instantaneous amplitude. The figure illustrates a modulated sine wave varying between an upper envelope and a lower envelope. The envelope function may be a function of time, space, angle, or indeed of any variable. Envelope for a modulated sine wave.
In mathematics, a Gaussian function ... in signal processing to define Gaussian filters, ... Here the coefficient A is the amplitude, x 0, ...
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context.
The latter will sparsely be used here, it is only needed to obtain a precise definition of what it means for a subset of a function space to be closed. It will be concluded below that the function space of wave functions is a Hilbert space. This observation is the foundation of the predominant mathematical formulation of quantum mechanics.