Search results
Results from the WOW.Com Content Network
Picture of a poster clarifying the difference between a sidereal day and the more conventional solar day Animation showing the difference between a sidereal day and a solar day. Sidereal time ("sidereal" pronounced / s aɪ ˈ d ɪər i əl, s ə-/ sy-DEER-ee-əl, sə-) is a system of timekeeping used especially by astronomers.
Local mean time (LMT) is a form of solar time that corrects the variations of local apparent time, forming a uniform time scale at a specific longitude. This measurement of time was used for everyday use during the 19th century before time zones were introduced beginning in the late 19th century; it still has some uses in astronomy and navigation.
As the angle between the surface and the Sun moves from normal, the insolation is reduced in proportion to the angle's cosine; see effect of Sun angle on climate. In the figure, the angle shown is between the ground and the sunbeam rather than between the vertical direction and the sunbeam; hence the sine rather than the cosine is appropriate.
On a prograde planet like the Earth, the sidereal day is shorter than the solar day. At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360° and the distant star is overhead again (1→2 = one sidereal day). But it is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day). More simply, 1→2 is a complete ...
Daytime length or daytime duration is the time elapsed between beginning and end of the daytime period. Given that Earth's own axis of rotation is tilted 23.44° to the line perpendicular to its orbital plane , called the ecliptic , the length of daytime varies with the seasons on the planet's surface, depending on the observer's latitude .
The military time zones are a standardized, uniform set of time zones for expressing time across different regions of the world, named after the NATO phonetic alphabet. The Zulu time zone (Z) is equivalent to Coordinated Universal Time (UTC) and is often referred to as the military time zone.
The horizontal, or altitude-azimuth, system is based on the position of the observer on Earth, which revolves around its own axis once per sidereal day (23 hours, 56 minutes and 4.091 seconds) in relation to the star background. The positioning of a celestial object by the horizontal system varies with time, but is a useful coordinate system ...
The dispersion characteristics of the Earth-ionospheric waveguide can be used for locating thunderstorm activity by measurements of the difference of the group time delay of lightning signals at adjacent frequencies up to distances of 10000 km. [7] The Schumann resonances allow to determine the global lightning activity. [9]