Search results
Results from the WOW.Com Content Network
An Elementary Treatise on Fourier's Series: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (2 ed.). Ginn. p. 30. Carslaw, Horatio Scott (1921). "Chapter 7: Fourier's Series". Introduction to the Theory of Fourier's Series and Integrals, Volume 1 (2 ed.). Macmillan and Company. p. 196.
A Fourier series (/ ˈ f ʊr i eɪ,-i ər / [1]) is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are ...
The same discrete set is obtained by treating the duration of the segment as one period of a periodic function and computing the Fourier series coefficients. Sine and cosine transforms: When the input function has odd or even symmetry around the origin, the Fourier transform reduces to a sine transform or a cosine transform, respectively.
For example, JPEG compression uses ... The inverse transform, known as Fourier series, is a representation of () ... Clairaut's work was a cosine-only series ...
By applying Euler's formula (= + ), it can be shown (for real-valued functions) that the Fourier transform's real component is the cosine transform (representing the even component of the original function) and the Fourier transform's imaginary component is the negative of the sine transform (representing the odd component of the ...
The Fourier series for the identity function suffers from the Gibbs phenomenon near the ends of the periodic interval. Every Fourier series gives an example of a trigonometric series. Let the function f ( x ) = x {\displaystyle f(x)=x} on [ − π , π ] {\displaystyle [-\pi ,\pi ]} be extended periodically (see sawtooth wave ).
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
In mathematics, a half range Fourier series is a Fourier series defined on an interval [,] instead of the more common [,], with the implication that the analyzed function (), [,] should be extended to [,] as either an even (f(-x)=f(x)) or odd function (f(-x)=-f(x)). This allows the expansion of the function in a series solely of sines (odd) or ...