enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteristic radius associated with any quantity of mass.

  3. Kruskal–Szekeres coordinates - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Szekeres_coordinates

    In the Schwarzschild coordinates, the Schwarzschild radius = is the radial coordinate of the event horizon = =. In the Kruskal–Szekeres coordinates the event horizon is given by =. Note that the metric is perfectly well defined and non-singular at the event horizon.

  4. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    Schwarzschild's equation alone says nothing about how much warming would be required to restore balance. When meteorologists and climate scientists refer to "radiative transfer calculations" or "radiative transfer equations" (RTE), the phenomena of emission and absorption are handled by numerical integration of Schwarzschild's equation over a ...

  5. Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_metric

    The Schwarzschild black hole is characterized by a surrounding spherical boundary, called the event horizon, which is situated at the Schwarzschild radius (), often called the radius of a black hole. The boundary is not a physical surface, and a person who fell through the event horizon (before being torn apart by tidal forces) would not notice ...

  6. Karl Schwarzschild - Wikipedia

    en.wikipedia.org/wiki/Karl_Schwarzschild

    Karl Schwarzschild (German: [kaʁl ˈʃvaʁtsʃɪlt] ⓘ; 9 October 1873 – 11 May 1916) was a German physicist and astronomer.. Schwarzschild provided the first exact solution to the Einstein field equations of general relativity, for the limited case of a single spherical non-rotating mass, which he accomplished in 1915, the same year that Einstein first introduced general relativity.

  7. Gravitational redshift - Wikipedia

    en.wikipedia.org/wiki/Gravitational_redshift

    An improved experiment was done by Pound and Snider in 1965, with an accuracy better than the 1% level. [31] A very accurate gravitational redshift experiment was performed in 1976, [32] where a hydrogen maser clock on a rocket was launched to a height of 10 000 km, and its rate compared with an identical clock on the ground. It tested the ...

  8. Innermost stable circular orbit - Wikipedia

    en.wikipedia.org/wiki/Innermost_stable_circular...

    where is the Schwarzschild radius of the massive object with mass . Thus, even for a non-spinning object, the ISCO radius is only three times the Schwarzschild radius , R S {\displaystyle R_{S}} , suggesting that only black holes and neutron stars have innermost stable circular orbits outside of their surfaces.

  9. Apparent horizon - Wikipedia

    en.wikipedia.org/wiki/Apparent_horizon

    That is, the location and even existence of an apparent horizon depends on the way spacetime is divided into space and time. For example, it is possible to slice the Schwarzschild geometry in such a way that there is no apparent horizon, ever, despite the fact that there is certainly an event horizon. [6]