Search results
Results from the WOW.Com Content Network
The general structure of a phosphite ester showing the lone pairs on the P. In organic chemistry, a phosphite ester or organophosphite usually refers to an organophosphorous compound with the formula P(OR) 3. They can be considered as esters of an unobserved tautomer phosphorous acid, H 3 PO 3, with the simplest example being trimethylphosphite ...
Phosphite esters with tertiary alkyl halide groups can undergo the reaction, which would be unexpected if only an S N 2 mechanism was operating. Further support for this S N 1 type mechanism comes from the use of the Arbuzov reaction in the synthesis of neopentyl halides, a class of compounds that are notoriously unreactive towards S N 2 reactions.
A phosphite anion or phosphite in inorganic chemistry usually refers to [HPO 3] 2− but includes [H 2 PO 3] − ([HPO 2 (OH)] −). These anions are the conjugate bases of phosphorous acid (H 3 PO 3). The corresponding salts, e.g. sodium phosphite (Na 2 HPO 3) are reducing in character.
Phosphate esters have the general structure P(=O)(OR) 3 feature P(V). Such species are of technological importance as flame retardant agents, and plasticizers. Lacking a P−C bond, these compounds are in the technical sense not organophosphorus compounds but esters of phosphoric acid. Many derivatives are found in nature, such as ...
Key in explaining the difference in reactivity is the electron density on the α-keto carbon atom. Perkow quinoline application Aryl enol phosphates formed in good yields (ca. 90%) in the Perkow reaction can be used as phosphorylating reagents, e.g. able to transform AMP into ATP .
Triethyl phosphite is an organophosphorus compound, specifically a phosphite ester, with the formula P(OCH 2 CH 3) 3, often abbreviated P(OEt) 3. It is a colorless, malodorous liquid. It is used as a ligand in organometallic chemistry and as a reagent in organic synthesis.
The mechanism starts with an allylic sulfoxide 1 which undergoes a thermal 2,3-sigmatropic rearrangement to give a sulfenate ester 2. This can be cleaved using a thiophile, such as phosphite ester , which leaves the allylic alcohol 3 as the product.
The Michaelis–Arbuzov reaction is the chemical reaction of a trivalent phosphorus ester with an alkyl halide to form a pentavalent phosphorus species and another alkyl halide. Commonly, the phosphorus substrate is a phosphite ester (P(OR) 3) and the alkylating agent is an alkyl iodide. [11] The mechanism of the Michaelis–Arbuzov reaction