Search results
Results from the WOW.Com Content Network
The y arc elasticity of x is defined as: , = % % where the percentage change in going from point 1 to point 2 is usually calculated relative to the midpoint: % = (+) /; % = (+) /. The use of the midpoint arc elasticity formula (with the midpoint used for the base of the change, rather than the initial point (x 1, y 1) which is used in almost all other contexts for calculating percentages) was ...
The elasticity at a point is the limit of the arc elasticity between two points as the separation between those two points approaches zero. The concept of elasticity is widely used in economics and metabolic control analysis (MCA); see elasticity (economics) and elasticity coefficient respectively for details.
Loosely speaking, this gives an "average" elasticity for the section of the actual demand curve—i.e., the arc of the curve—between the two points. As a result, this measure is known as the arc elasticity, in this case with respect to the price of the good. The arc elasticity is defined mathematically as: [16] [17] [18]
The compatibility conditions in linear elasticity are obtained by observing that there are six strain-displacement relations that are functions of only three unknown displacements. This suggests that the three displacements may be removed from the system of equations without loss of information.
Elasticity theory primarily develops formalisms for the mechanics of solid bodies and materials. [1] (Note however, the work done by a stretched rubber band is not an example of elastic energy. It is an example of entropic elasticity.) The elastic potential energy equation is used in calculations of positions of mechanical equilibrium.
The Frenet–Serret formulas apply to curves which are non-degenerate, which roughly means that they have nonzero curvature. More formally, in this situation the velocity vector r′(t) and the acceleration vector r′′(t) are required not to be proportional. Let s(t) represent the arc length which the particle has moved along the curve in ...
In linear elasticity, the equations describing the deformation of an elastic body subject only to surface forces (or body forces that could be expressed as potentials) on the boundary are (using index notation) the equilibrium equation:
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.