Search results
Results from the WOW.Com Content Network
If every internal angle of a simple polygon is less than a straight angle (π radians or 180°), then the polygon is called convex. In contrast, an external angle (also called a turning angle or exterior angle) is an angle formed by one side of a simple polygon and a line extended from an adjacent side. [1]: pp. 261–264
The exterior angle theorem is not valid in spherical geometry nor in the related elliptical geometry. Consider a spherical triangle one of whose vertices is the North Pole and the other two lie on the equator. The sides of the triangle emanating from the North Pole (great circles of the sphere) both meet the equator at right angles, so this ...
Then one of the alternate angles is an exterior angle equal to the other angle which is an opposite interior angle in the triangle. This contradicts Proposition 16 which states that an exterior angle of a triangle is always greater than the opposite interior angles. [5]: 307 [3]: Art. 88
Equivalently, a convex quadrilateral is cyclic if and only if each exterior angle is equal to the opposite interior angle. In 1836 Duncan Gregory generalized this result as follows: Given any convex cyclic 2 n -gon, then the two sums of alternate interior angles are each equal to ( n -1) π {\displaystyle \pi } . [ 4 ]
The supplement of an interior angle is called an exterior angle; that is, an interior angle and an exterior angle form a linear pair of angles. There are two exterior angles at each vertex of the polygon, each determined by extending one of the two sides of the polygon that meet at the vertex; these two angles are vertical and hence are equal.
The measure of an exterior angle of a triangle is equal to the sum of the measures of the two interior angles that are not adjacent to it; this is the exterior angle theorem. [34] The sum of the measures of the three exterior angles (one for each vertex) of any triangle is 360 degrees, and indeed, this is true for any convex polygon, no matter ...
The 'interior' or 'internal bisector' of an angle is the line, half-line, or line segment that divides an angle of less than 180° into two equal angles. The 'exterior' or 'external bisector' is the line that divides the supplementary angle (of 180° minus the original angle), formed by one side forming the original angle and the extension of ...
The side opposite angle α meets the circle twice: once at each end; in each case at angle α (similarly for the other two angles). This is due to the alternate segment theorem , which states that the angle between the tangent and chord equals the angle in the alternate segment.